
9: Advanced shading techniques

Obtaining realistic renderings in real-time!

Remember the Phong’s local model...

diffuse

[Phong CACM 1975]

ambiant specular

wikipedia

3

diffuseambiant specular

https://www.marmoset.co/posts/pbr-texture-conversion/

… varying materials via the use of textures

Use textures for more than material effects

● to modify surface appearance
● to modify lighting properties

Modify surface appearance

● Normal mapping
● Bump mapping
● Parallax mapping
● Displacement mapping

Modify surface appearance
*** Normal mapping ***

Goal: locally perturb normals to create the illusion of modified geometry

Modify surface appearance
*** Normal mapping ***

Goal: locally perturb normals to create the illusion of modified geometry

Modify surface appearance
*** Normal mapping ***

Goal: locally perturb normals to create the illusion of modified geometry

In practice:
● normals stored in the “tangent space”
● requires transformation matrix

○ from world to tangent space
○ (or inversely)

● Tangents computed as a pre-process
○ according to tex coords derivatives
○ see http://www.terathon.com/code/tangent.html
○ stored as a new per-vertex attribute

http://www.terathon.com/code/tangent.html

Modify surface appearance
*** Normal mapping ***

Goal: locally perturb normals to create the illusion of modified geometry

In practice (GPU side):
● Given original normal N and tangent T
● Compute the binormal vector:

○ B = N x T
● Build the TBN matrix:

● Transform a vector v
○ from tangent to world: vw = TBN vt
○ from world to tangent: vt = TBN vw

Modify surface appearance
*** Bump mapping ***

Same principle: but uses a depth (grey-level) map as input

In practice:
● Compute normals from the depth (using finite differences)
● Apply the normal mapping method

Modify surface appearance
*** Parallax mapping ***

Same goal, but more realistic
● Bump/normal mapping does not fetch the good depth/normal values

In practice:
● walk along the (projected) view vector
● detect the right values at the intersection between the view and perturbed heightfield
● apply the normal mapping approach
● more info: http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28

http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28

Modify surface appearance
*** Parallax mapping ***

Same goal, but more realistic

without

Modify surface appearance
*** Parallax mapping ***

Same goal, but more realistic

with

Modify surface appearance
*** Displacement mapping ***

Goal: actually displace vertices!
normal mapping

Modify surface appearance
*** Displacement mapping ***

Goal: actually displace vertices!
displacement mapping

Modify surface appearance
*** Displacement mapping ***

In practice:
● move vertices along their normals
● requires highly tessellated meshes

○ rely on adaptive tesselation
○ using the tesselation shader

Goal: actually displace vertices!

Modify lighting effects

● Environment mapping
● Prefiltered environment maps
● Ambient occlusion
● Shadow mapping

Modify lighting effects
*** Environment mapping
***Goal: realistic reflections/refractions

cube map light probe

latitude-longitude map

Modify lighting effects
*** Environment mapping
***Goal: realistic reflections/refractions

In practice:
● Create the texture

○ acquired (using HDR photos of a mirrored sphere for instance)
○ or synthesized in real-time

● Using the reflected/refracted vector
○ compute the corresponding coordinates (spherical/cube/probe)
○ fetch texture color (basically 2 lines of code)

Modify lighting effects
*** Environment mapping
***Goal: realistic reflections/refractions

Reflection Refraction

Modify lighting effects
*** Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

Convolution
(cosine lobe)

Modify lighting effects
*** Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

For pure diffuse surfaces:
● Low-frequency image

● can be represented with a few coefficients of refinable basis functions
○ e.g. spherical harmonics

Modify lighting effects
*** Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

radiance irradiance

For pure diffuse surfaces:

● 9 coefficients sufficient
● can be pre-computed for each vertex (as attributes)! and evaluated in real-time

Modify lighting effects
*** Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

Modify lighting effects
*** ambient occlusion ***

Goal: compute (averaged) visibility at each surface point [Miller 94]

Modify lighting effects
*** ambient occlusion ***

Goal: compute (averaged) visibility at each surface point [Miller 94]

autodesk.com

Modify lighting effects
*** ambient occlusion ***

Goal: compute (averaged) visibility at each surface point [Miller 94]

More and more screen-space solutions/approximations:
● allows dynamic scenes/anim/deformations
● based on depth + normal maps

https://www.youtube.com/watch?time_continue=27&v=-IFxjKT7MXA
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
http://john-chapman-graphics.blogspot.fr/2013/01/ssao-tutorial.html

https://www.youtube.com/watch?time_continue=27&v=-IFxjKT7MXA
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
http://john-chapman-graphics.blogspot.fr/2013/01/ssao-tutorial.html

Modify lighting effects
*** Shadow mapping ***

Goal: create cast shadows

Modify lighting effects
*** Shadow mapping ***

Goal: create cast shadows

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

Modify lighting effects
*** Shadow mapping ***

Goal: create cast shadows

● draw scene from light
○ store depth in a texture
○ → called shadow map

Modify lighting effects
*** Shadow mapping ***

Goal: create cast shadows

● 1: draw scene from light
○ store depth in a texture
○ → called shadow map

● 2: draw scene from camera
○ compute lighting (as usual)
○ project each point in the light space
○ compare depth with the one

fetched in the shadow map
○ if farther: in the shadow!

Modify lighting effects
*** Shadow mapping ***

Goal: create cast shadows

● Some issues:
○ acne effect → require small bias

Modify lighting effects
*** Shadow mapping ***

Goal: create cast shadows

● Some issues:
○ acne effect → require small bias
○ shadow map resolution → cascaded shadow maps

http://ogldev.atspace.co.uk/www/tutorial49/tutorial49.html

Playing with images

Plenoptic function [Adelson and Bergen 91]

● P defines the intensity as a function of viewpoint, time, wavelength
● capture all possible images around p
● → Image Based Rendering (IBR) = reconstruct P from samples

Playing with images
*** light fields ***

Example: light field acquisition

refocusig example: http://lightfield.stanford.edu/lfs.html

http://lightfield.stanford.edu/lfs.html

Playing with images
*** relighting ***

Example: relighting

Playing with images
*** relighting ***

Example: relighting

Playing with images
*** relighting ***

Example: relighting

Playing with images
*** relighting ***

Example: relighting

more: https://www.youtube.com/watch?v=piJ4Zke7EUw

https://www.youtube.com/watch?v=piJ4Zke7EUw

