9: Advanced shading techniques

Obtaining realistic renderings in real-time!

Remember the Phong’s local model...
[Phong CACM 1975]

wikipedia

L(p—e) =K+) [Ka(n-€)+ K(r-e)"

ambiant > diffuse specular

... varying materials via the use of textures

albedo map metalness map roughness map final result

metalness shader content
https://www.marmoset.co/posts/pbr-texture-conversion/

L(p — E) = K, + Z[Kd(n ‘e) K Ks(,r ' e)n]ls

ambiant > diffuse specular

Use textures for more than material effects

e to modify surface appearance
e to modify lighting properties

L(p|>e) =Ko+) [Ka(n) &)+ Ks(r-e)"|ls

Modify surface appearance

Normal mapping
Bump mapping
Parallax mapping
Displacement mapping

Modify surface appearance

% Normal mapping ***

Goal: locally perturb normals to create the 1llusion of modified geometry

Modify surface appearance

% Normal mapping ***

Goal: locally perturb normals to create the 1llusion of modified geometry

Modify surface appearance

% Normal mapping *

Goal: locally perturb normals to create the illusion of modified geometry

In practice:
e normals stored in the “tangent space”
® requires transformation matrix
o from world to tangent space
o (or inversely)

e Tangents computed as a pre-process
o according to tex coords derivatives
o see http://www.terathon.com/code/tangent.html
o stored as a new per-vertex attribute

http://www.terathon.com/code/tangent.html

Modify surface appearance

% Normal mapping *

Goal: locally perturb normals to create the illusion of modified geometry

In practice (GPU side):

e (Given original normal N and tangent T
e (Compute the binormal vector:

o B=NxT
e Build the TBN matrix:
Ty B Y N, Y
T, B, N,

e Transform a vector v
o from tangent to world: v_=TBN v,
o from world to tangent: v.= TBN v_

Modify surface appearance

% Bump mapping ***

Same principle: but uses a depth (grey-level) map as input

In practice:
e Compute normals from the depth (using finite differences)
e Apply the normal mapping method

Modify surface appearance

% Parallax mapping ***

Same goal, but more realistic
e Bump/normal mapping does not fetch the good depth/normal values

\/i(‘l(l‘-f
Vector
Heightfield

ah
N\

Polygon T(offset) T{original)

In practice:
e walk along the (projected) view vector
e detect the right values at the intersection between the view and perturbed heightfield
e apply the normal mapping approach
e more info: http://sunandblackcat.com/tipFull View.php?l=eng&topicid=28

http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28

Modify surface appearance

% Parallax mapping ***

Same goal, but more realistic

without

Modify surface appearance

% Parallax mapping ***

Same goal, but more realistic

with

Modify surface appearance

% Displacement mapping ***

Goal: actually displace vertices!

normal mapping

Modify surface appearance

% Displacement mapping ***

Goal: actually displace vertices!

displacement mapping

Modify surface appearance

4% Displacement mapping ***

Goal: actually displace vertices!

In practice:
e move vertices along their normals
e requires highly tessellated meshes
o rely on adaptive tesselation
o using the tesselation shader

Modify lighting effects

Environment mapping
Prefiltered environment maps
Ambient occlusion

Shadow mapping

Modify lighting effects

¥ Environment mapping
3

Goal: realistic reflections/refractions

latitude-longitude map

cube map light probe

Modify lighting effects

¥ Environment mapping
3

Goal: realistic reflections/refractions

In practice:
e C(Create the texture /4 |
o acquired (using HDR photos of a mirrored sphere for instance) | AR
o or synthesized in real-time §

e Using the reflected/refracted vector
o compute the corresponding coordinates (spherical/cube/probe)
o fetch texture color (basically 2 lines of code)

Modify lighting effects

*¥% Environment mapping
3k

Goal: realistic reflections/refractions

Reflection Refraction

Modify lighting effects

*¥% Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

Convolution
(cosine lobe)

Modify lighting effects

*¥% Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

Modify lighting effects

*¥% Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

For pure diffuse surfaces:
e [ow-frequency image

radiance irradiance

e can be represented with a few coefficients of refinable basis functions

o e.g. spherical harmonics ‘
Yl)”

Modify lighting effects

#% Prefiltered environment mapping ***

Goal: realistic glossy reflections/refractions, diffuse surfaces

For pure diffuse surfaces:

Original Approx order O (1 coefs) Approx order 1 (4 coefs) Approx order 2 (9 coefs)
RMS = 25% RMS=8% RMS=1%

e 9 coefficients sufficient
e can be pre-computed for each vertex (as attributes)! and evaluated in real-time

Modify lighting effects

% ambient occlusion *

Goal: compute (averaged) visibility at each surface point [Miller 94]

Modify lighting effects

¥ ambient occlusion ***
Goal: compute (averaged) visibility at each surface point [Miller 94]

autodesk.com

Original model With ambient occlusion Extracted ambient occlusion map

Modify lighting effects

% ambient occlusion *

Goal: compute (averaged) visibility at each surface point [Miller 94]

More and more screen-space solutions/approximations:
e allows dynamic scenes/anim/deformations
e based on depth + normal maps

https://www.youtube.com/watch?time_continue=27&v=-1Fx]JKT7/TMXA
https://en.wikipedia.org/wiki/Screen_space ambient occlusion
http://john-chapman-graphics.blogspot.fr/2013/01/ssao-tutorial.html

https://www.youtube.com/watch?time_continue=27&v=-IFxjKT7MXA
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
http://john-chapman-graphics.blogspot.fr/2013/01/ssao-tutorial.html

Modify lighting effects

*#% Shadow mapping ***

Goal: create cast shadows

Light source

Is the light source
visible?

L(p —e) =paLoa+ Y p(p,e,€) (n-£,)V(p, O L(p + £)

Modify lighting effects

k4% Shadow mapping ***

Goal: create cast shadows

http://www.opengl-tutorial.ora/intermediate-tutorials/tutorial-16-shadow-mapping/

(e

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

Modify lighting effects

k4% Shadow mapping ***

Goal: create cast shadows

e draw scene from light
o store depth in a texture
o — called shadow map

Goal: create cast shadows

® |[:draw scene from light

©)
©)

store depth in a texture
— called shadow map

e 2:draw scene from camera

©)
@)
@)

compute lighting (as usual)

project each point in the light space
compare depth with the one

fetched in the shadow map

if farther: in the shadow!

Modify lighting effects

k4% Shadow mapping ***

Modify lighting effects

k4% Shadow mapping ***

Goal: create cast shadows

e Some issues:
o acne effect — require small bias

Lightmap pixels

Modify lighting effects

u% Shadow mapping ***

Goal: create cast shadows

e Some issues:
o acne effect — require small bias
o shadow map resolution — cascaded shadow maps

http://ogldev.atspace.co.uk/wwwi/tutorial49/tutorial49.html

Playing with images

Plenoptic function [Adelson and Bergen 91]

'llt

Q'.

Hmw1.lr
——

AL L LTI
(97 ¢7)‘7 tv Va:a Vy7 Vz)

e P defines the intensity as a function of viewpoint, time, wavelength
e capture all possible images around p
e — Image Based Rendering (IBR) = reconstruct P from samples

Playing with images
u light fields ***
Example: light field acquisition

ErS

o
il o
- ; b
"R
4
-~

e

Stanford Multi-Camera Array Distributed Light Field Camera

125 cameras using custom hardware 64 cameras with distributed rendering
[Wilburn et al. 2002, Wilburn et al. 2005] [Yang et al. 2002]

-
!!?v

refocusig example: http://lightfield.stanford.edu/Ifs.html

http://lightfield.stanford.edu/lfs.html

Playing with images

€k relighting ***

Example: relighting

“Light Stage”

Temps d’exposition 60s

Playing with images

€k relighting ***

Example: relighting

»
-
\
3
\
o
S

Playing with images

E relighting ***

Example: relighting

Playing with images
E relighting ***
Example: relighting

The Curious Case of Benjamin Button

more: https://www.youtube.com/watch?v=pidJ4Zke7EUw

https://www.youtube.com/watch?v=piJ4Zke7EUw

