Animation Models

3D Graphics

What we see today

- Skeleton-based animations

 Suitable to animate human-like models
- Blendshape-based animations Suitable to animate faces
- Data-driven animations Allow to model motion of human-like characters
- Physics-based animations & collisions

 Suitable for unstructured natural phenomena: water, gravel, ...

Skeleton-Based Animations

Main Idea (1)

- Use piecewise as-rigid-as-possible deformation

 "Pieces" are defined using "bones" of a skeleton
 Pieces overlap at joints
 Bone b_j rigidly transformed with matrix T_j
 - $\circ T_j$ composed by hierarchical structure

Main Idea (2)

Use piecewise as-rigid-as-possible deformation

 ○ Point p_i is assigned one weight ω_{i,j} per bone
 ○ Point p_i transformed as p^{*}_i = (∑_j ω_{i,j}T_j) p_i

Properties

- Method called linear blend skinning
- Simple to use
- Linear
- Creating artifacts close to joint locations for large deformations

Extensions

- Many extensions exist to improve on artifacts
- Popular models include
 - \odot Spline skinning
 - \odot Dual quaternion skinning

Applications

- Use model to deform
 - \circ Humans
 - \circ Animals with skeleton
- Used for
 - \circ Animation
 - \circ Correspondence computation
 - \circ Tracking deforming models

Standard Use in Animation

- Manually define skeleton and hierarchy
- Manually define rigging weights
- Animation artists carefully choose these quantities to achieve desired effects

Extensions

- Automatic computations exist for
 - \circ Skeleton computation
 - Skinning weight computation
 - Statistical models of body shape variation due to change of identity and/or motion
- Used for scenes that are not shown as close-ups (e.g. crowds)

Image from [Stolpner, Siddiqi, Whitesides, Approximating the Medial Axis by Shooting Rays: 3D Case, CCCG 2011]

Method and Figure from [Baran, Popovic, Automatic Rigging and Animation of 3D Characters, SIGGRAPH 2007]

Blendshape-based animations

Main Idea

- Similar to skeleton-based model but for faces
 - Instead of "pieces", we have a set of example poses called blendshapes $A_0, \ldots, A_0 + A_i, \ldots, A_0 + A_n$
 - \circ A_0 is the neutral rest pose
 - The final result is a linear combination of the examples

Standard Use in Animation

- Manually define blendshapes
- Define a motion using keyframes that are interpolated

Extension

Automatic computations

 Analyze possible shape variation of face based on database of 3D scans of population

 Compute statistical models of shape variation due to change of identity and/or motion

 \circ Use to extract blendshapes A_i

• Active area of research

Data-driven animation

- 1. Motion capture based on sparse keypoints
- 2. Fitting to dynamic scan data based on dense 4D scans

Motion capture

- Traditional approach used throughout industry today
- Based on a sparse set of keypoints recorded over time
- Static model is fitted to this

Motion capture A well suited method for humans

- Capture of markers on an actor

 Magnetic or optic: set of synchronized cameras
 Difficulty: reconstruct motion
 - despite of occlusions
- Replay similar motion
 - \odot Curves of angle values over time

Examples of use:

- Feature films
- Sport video games(library of typical motion)

Motion capture Problems to be solved

To make it generally applicable

- Adapt to different morphologies

 monsters, aliens...
- Combining different motions

 \circ walk while raising arms

o motion graphs for transitions (walk, fall, get up, run....)

• Editing at various levels of detail

 \circ walk on uneven ground

Physics-Based Animation & Collisions

Reminder: Descriptive animation

• Describes a single motion with manual control Ex: direct kinematics with key-frames, inverse kinematics

• Advantage:

 \odot Skilled artist can create what they want

• Problems:

• Defining a new motion is very tedious

- The user gets no help towards realism
- Objects may collide and intersect each other, etc.

Towards methods that generate motion ?

• The user defines the laws of motion

Examples :

- Physical laws (gravity, collisions...)
- Behavioral laws (artificial intelligence)
- The system generates motion from

The initial conditions
 The laws to be applied

« Procedural animation »

- Describes a family of motions
- Indirect control

Procedural animation : Examples

Procedural virtual ocean

• Particle systems

(fire, smoke, rain, bees, fishes...)

Points : X (x,y,z), V (v_x, v_y, v_z)
V given by a "law"
Birth and death of particles

Physically-based models

Laws of motion from mechanics

Model (mass etc) + initial conditions + applied forces
 → Motion & deformations

Advantage: a help towards realism!

- o useful when dynamics plays an important part
- o easier for passive models!

Examples :

o Toy-Story, Shrek

Physically-based models

Standard animation algorithm

- Loop: $t := t + \Delta t$
 - For each object
 - 1. Compute new speed (use law & applied forces)
 - 2. Compute new position & deformation
 - 3. Display
 - For each pair of objects
 - 1. Detect collisions
 - 2. Compute new applied forces

Exercise:

- Where is the approximation?
- Can you improve the loop?

Physically-based models Which laws of motion do we need?

We need... Rigid bodies

- Solids
- Articulated solids

Ex:

Rolling ball? Lamps? Wire?

We need... Deformable bodies

Structured

- Elasticity
 - Deformation under forcesBack to equilibrium
- Visco-elasticity

 Speed of deformation
- Fractures
 - \circ If distortion is too large

Ex : ball, organ, cloth, paper...

Un-structured ○ Neighbors change!

- Plasticity • Absorbs deformations
- Fluids

 Navier-Stokes
- Ex : mud, clay, liquids, smoke...

Main motions laws used in Computer Graphics

Point-based physics

- Model [*m*, *X*, *V*]
- Law: $F = \sum Forces = m A = m dV/dt$

Solid physics

- Model [m, I inertia matrix, X, V, ω angular speed]
- Laws: $\sum F = m (dV/dt)$ $\sum M = I (d\omega/dt) + \omega \wedge I \omega$

Difficulty: representation of orientations!

Main motions laws used in Computer Graphics

Articulated solids

 Solid dynamics + unknown internal forces at joints! (Lagrange multipliers..)

Deformable models

- Linear & non-linear elasticity, plasticity
- Navier-Stokes for fluids

NB: Eulerian vs Lagrangian discretization

This lecture: Do it **all** with point-based physics!

- Physically-based model: Particles [m, X, V]
- Motion law : ∑ Forces = m A

Animation algorithm

• At each time step, for each particle $V(t+dt) = V(t) + \sum F(t)/m dt$ X(t+dt) = X(t) + V(t) dt

From a model to another one

 Choose the appropriate forces
 Render with adapted geometry!

Integration:

- Explicit Euler : may diverge!
- Implicit integration (next year)

Do it all with point-based physics? Lots of simple objects

Physically-based particle systems

- Example : gravels, cereals
 - Gravity
 - \odot Spheres for collisions detection
 - \circ Random individual geometry
- Example: animating autumn leaves
 - o Leaves = particle + local frame
 - \circ Wind primitives
 - \circ Gravity
 - Friction force strong in normal direction, weak in tangential one

Do it all with point-based physics? Structured deformable bodies

1D, 2D, 3D mass-spring networks

- Spring: F = k (x-x₀) (where x is length)
- Angular spring: $F = k (\alpha \alpha_0)$
- Damping: or air friction: $F = -\lambda v$

Do it all with point-based physics? Articulated solids

• Articulated solids? Joint = spring of zero length

- How would you model the solids within an articulated solid with springs? (to enable rotation)
- Drawbacks compared to more accurate physics?

Do it all with point-based physics? Unstructured objects

• Particle systems inspired from molecular

dynamics

Lennard-Jones attraction/repulsion force
 force
 distance

Do it all with point-based physics? Unstructured objects [Clavet, Beaudoin, Poulin, SCA'2005]

Particle-based Viscoelastic Fluid Simulation

Simon Clavet Philippe Beaudoin Pierre Poulin

SCA 2005

Collisions

Physically-based models Interactions (collisions) between objects

Processing them: an advantage of physically-based models!

Continuous solutions

- Intersections of trajectories
- Back to the contact time!
- Discrete time solutions
 - 1. Detect interpenetrations
 - 2. Model contact
 - 3. Respond to collisions

- 1. Detect interpenetrations
- Broad phase
 - Goal: eliminate quickly couples
 of objects that cannot intersect
- Narrow phase
 - Intersection of geometry

Broad phase of collision detection

Method 1: Event-based detection

- Guarantee that a pair cannot collide before ...
- Use a temporal queue to store the next tests

 Only works for rigid solids with bounded acceleration

Broad phase of collision detection

Method 2: Space grid

- Each cell store list of objects intersecting it
- Tests: pairs of objects in the same cell

Exercise:

- Good choice of cell size compared to size of objects?
- Propose a solution with a grid of adaptive size

Broad phase of collision detection

Method 3: Bounding volumes

 \circ Spheres

distance $< R_1 + R_2$?

Axis-aligned bounding boxes (AABB)

 $(X_1 - max > X_2 - min) \& (Y_1 - max > Y_2 - min) \& (Z_1 - max > Z_2 - min)$

Oriented bounding boxes (OBB)

41

Broad phase of collision detection

Method 4: Hierarchies of bounding volumes

Detection: Divide & conquer approach
 O Refine if the parent volumes intersect

Exercise: Write the animation loop Extend to constant time, approximate detection

Narrow phase = test object geometry

• For each pair of object

Use the geometric description

 Polygonal models: intersection between pairs of faces (O(n^2))

Done only for faces of the other object lying in the bounding volume of the first one!

Narrow phase: remarks

- Many recent methods based on the graphics hardware (GPU)
- Thin objects: Some collisions can be missed

Untangling cloth [Baraff03]

Step 1: Collision detection Step 2: Contact modeling ?

- Rigid objects
 - Back to a « valid configuration »? Inequalities expressing non-penetration Global system to be solved

- Virtual reality: fast solution for a single collision
 Display a non-penetrating proxy (god-object)
- Deformable models
 - Deform objects without moving them?

Step 3: Response to collisions

- Rigid bodies : 2 possible solutions
 - \circ Impulses

```
V = V_t + V_n
Modified speed: V := V_t - k V_n
```

(mirror with energy decay in normal direction)

Contact forces

- Soft objects
 - Contact forces

Step 3: Response to collisions

- "Penalty method" for response forces
 - Normal force function of penetration
 - + Friction forces (viscous, dry...)

Deep penetration: overshooting problem!

- Go back in time?
- Project the object to the closest point?
- Control energy after bouncing?
- Use adaptive time-steps?

