Chapter 3 : Principles of Animation
Animation

• “Animate” literally means “bring to life”
• To do so, the animator needs to define how objects move through space and time

Muybridge 1887
Frame

- A series of related still-images is interpreted as motion by human brain

- One minute of animation: 720-1800 frames
History

• First animation films (Disney)
 • 30 drawings / second
 • animator in chief: “key frames”
 • others: secondary drawings

Frame from Fantasmagorie, E. Cohl (1908)

« Descriptive animation »
The animator fully controls motion
Keyframe-based animation

• Option: use the computer to interpolate
 • positions (e.g. center of ball)
 • orientations (e.g. of ellipse)
 • shapes (e.g. aspect ratio of ellipse)

• Or give the trajectory (of position) explicitly
Interpolating Positions

Possible using splines curves

Interpolation: Hermite curves or Cardinal splines

• Local control
 • Made of polynomial curve segments
 • degree 3, class C^1
Hermite Curves of Order 1

- Piecewise segments of degree 3 of the form

\[
\begin{align*}
x(t) &= a_3 t^3 + a_2 t^2 + a_1 t + a_0 \\
y(t) &= b_3 t^3 + b_2 t^2 + b_1 t + b_0 \\
z(t) &= c_3 t^3 + c_2 t^2 + c_1 t + c_0
\end{align*}
\]

- 12 degrees of freedom per segment
- Order 1 (C^1) transition between segments
Hermite Curves of Order 1

- Each curve segment defined by:
 \[C_i(0) = P_i \]
 \[C_i(1) = P_{i+1} \]
 \[C'_i(0) = D_i \]
 \[C'_i(1) = D_{i+1} \]

- Advantage: local control

Exercise: how to ease the definition for general users? Propose an automatic way to compute tangents.
Hermite Curves of Order 2

- Degree 3, Order 2 (C^2).

 \[
 \begin{align*}
 C_{i-1}(1) &= P_i \\
 C_i(0) &= C_{i-1}(1) \\
 C'_i(0) &= C'_{i-1}(1) \\
 C''_i(0) &= C''_{i-1}(1)
 \end{align*}
 \]

- Can be solved by adding tangent constraints at the extremities
- Problem: Global definition only! (costly & no local control)
Cardinal Splines

Degree 3, Order 1 (C^1).
Each curve segment defined by
\[C_i(0) = P_i \]
\[C_i(1) = P_{i+1} \]
\[C'_i(0) = k (P_{i+1} - P_{i-1}) \]
\[C'_i(1) = k (P_{i+2} - P_i) \]

Exercise
Order of locality?
What is the effect of k?
How can we model a closed curve?

Catmull-Rom
Cardinal with tension $k = 0.5$
Interpolating Positions

Exercise

- **Goal:** animate a bouncing ball
 - Describe a method for computing the trajectory from the control points.
 - How would you animate the changes of speed?
 - What is missing in this kinematic animation in terms of realism?
Interpolating Positions

- Interpolating key positions
 - Interpolation curves
 Enable inflection points!
 (where C^0 only)

- Speed control:
 Reparameterize the trajectory
 « velocity curve »
Interpolating Orientations

• Interpolation of orientations
 Choose the right representation!

 • Rotation matrix?
 • Euler angle?
 • Quaternion?
Rotational matrix

- Representation: **orthogonal matrix**
 - each orientation = 9 coefficients

- Interpolation:
 - Interpolate coefficients one by one
 - Re-orthogonalize and re-normalize

Costly and inappropriate:

\[M = k M_1 + (1-k) M_2 \]

can be degenerate

Impossible to approximate it by an orthogonal matrix in this case

Exemple:

Axis x, angle \(\alpha \)

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\alpha) & -\sin(\alpha) \\
0 & \sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\]

Exercise:

\(M_1 = \text{Id} \)

\(M_2 = \text{rotation} \)

\[\text{x axis, } \alpha = \pi \]

M for \(k=0.5 \)?
Euler Angles

Representation:

- Three angles \((\psi, \theta, \varphi)\)
- Intuitive: \(R(V) = R_{z,\varphi}(R_{x,\theta}(R_{z,\psi}(V)))\)

« Roll, pitch, yaw » in flight simulators
Interpolating Euler Angles

+ more efficient: 3 values for 3 Degrees of Freedom (DoF)
- non-invariant by rotation, and un-natural result

rotation of 90° around Z, then 90° around Y $= 120^\circ$ around (1, 1, 1)

But rotation of 30° around Z then 30° around Y $\neq 40^\circ$ around (1, 1, 1)
Problem with Euler Angles: gimbal lock

- Two or more axes aligned = loss of rotation DoF

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf
Quaternions

Representation: \(q = (\cos(\alpha/2), \sin(\alpha/2)N) \in S^4 \)

By analogy:
1, 2, 3-DoF rotations as points on 2D, 3D, 4D spheres
Quaternions

Algebra of quaternions

• Generated by (1,i,j,k)

 neutral element: (1,0,0,0)
 \(i^2 = j^2 = k^2 = ijk = -1, \quad 1^2 = 1 \)
 \(ij = -ji = k \)
 \(jk = -kj = i \)
 \(ki = -ik = j \)

• Notation \(q = (q_r, q_p) \) where \(q_p \in \mathbb{R}^3 \)

 \[p \cdot q = (p_r q_r - p_p q_p, p_r q_p + q_r p_p + p_p \wedge q_p) \]
 \[q^{-1} = (q_r, -q_p) / (q_r^2 + q_p \cdot q_p) \]
Quaternions

Used to represent rotations

Rotation \((\alpha, \mathbf{N})\):
\[
q = (\cos(\alpha/2), \sin(\alpha/2) \mathbf{N})
\]

- Unit quaternion \(\in S^4 \)
- Apply a rotation
 \[
 R(\mathbf{V}) = q \cdot (0,\mathbf{V}) \cdot q^{-1}
 \]
- Compose two rotations: \(p \cdot q \)
Quaternions

- Interpolate quaternions? : splines on S^4
- Interpolation method?

- Use spherical!

\[\text{lerp} \left(q_0, q_1, t \right) = q(t) = q_0 \left(1 - t \right) + q_1 t \]

\[\text{slerp} \left(q_0, q_1, t \right) = q(t) = \frac{q_0 \sin \left((1 - t) \omega \right) + q_1 \sin (t \omega)}{\sin(\omega)} \]
Interpolating Shape

• Difficult in general
• Simple cases: parameterize shape (e.g. using major axes for ellipses) and interpolate parameters

• Complex cases:
 • Simple method: sample shapes with keypoints and interpolate their positions
 • More complex methods: in advanced geometry lecture
Descriptive Models
Animate Deformations

Interpolate « key shapes »
• Example : « Disney effects»
 • Change scaling, color...

\[k(u) = (u^3 \ u^2 \ u \ 1) \ M_{\text{spline}} \ [k_{i-1} \ k_i \ k_{i+1} \ k_{i+2}]^t \]
Descriptive Models
Animate Deformations

Animate a geometric model
= animate its parameters

Exo: Propose methods to design and animate this bee with “Disney effects” including:

- squash & stretch
- anticipation
A Note on Timing

• Basic animation rendering loop could look like this

```java
while(true)
{
    processInput() // if applicable take user input into account
    update()
    render()
}
```

• Problem: timing of animation depends on processing power of computer running it
A Note on Timing

Option 1:
• Take a nap until it is time
• Works when machine is too fast (compared to animation time)

Option 2:
• Adapt what is rendered
• Works when machine is too fast or too slow

Hierarchical Animation
Hierarchical structures

They are essential for animation!
- Eyes move with head
- Hands move with arms
- Feet move with legs...

• Frame hierarchy
 - Root expressed in the world frame (translation + 1
 - Relative rotation with respect to the parent
Hierarchical structures

Generalized coordinates
 o Vector of degrees of freedom (DoF) at each joint

Example

1 DOF: knee

2 DOF: wrist

3 DOF: arm
Hierarchical structures

• To compute composite transformation
 o Put matrices in order of hierarchy on a stack
 o Multiply matrices to obtain composite transformation

• Quaternions
 o Typically transformed into matrix first
 o Not strictly necessary
Direct Animation with Forward Kinematics

Method: Interpolate key rotations

Exercise: Controlling a cycling motion
- Define key-rotations over time
- What is the main difficulty?
- What would be the extra problem for a walking motion?
Forward kinematics

Conclusion:

• Difficult to control extremities!
 (example: foot position while cycling)

• In practice: Top-down set-up method
 o Try to compensate un-desired motions!
Advanced method: Inverse kinematics

• Control of the end of a chain
 • Automatically compute the other orientations?
 \[x_1 = f(q) \quad x_2 = f(??) \]

Method from robotics

• Local inversions of a non-linear system
 \[\Delta x = J \Delta q, \text{ with } J_{ij} = \frac{\partial x_i}{\partial q_j} \text{ Jacobian matrix} \]
• Under-constrained system, pseudo-inverse: \(J^+ = J^t (J J^t)^{-1} \)

Exo: Show that \(\Delta q = J^+ \Delta x \) and \(\Delta q = J^+ \Delta x + (I-J^tJ) \Delta z \) are solutions.

What can \(\Delta z \) (called “secondary task”) be used for?