
1

1. Quest for Visual Realism

Need for fine details in color variation!

3: textures

2

Motivations
2. Limit the number of polygons

Micro-polygons
would be needed!

Problem: Everything cannot be
modeled at the scale of geometry!

3

Textures
Modeling changes of material

Enable the material attributes to vary inside a face
– The local attribute will be used during rendering

Examples of attributes: color, shininess, normals, transparency…

Still a single face,
but several colors

4

Textures
Modeling changes of material

Enable the material attributes to vary inside a face
– The local attribute will be used during rendering

Examples of attributes: color, shininess, normals, transparency…

Typically:

diffuseambiant specular

5

Textures
Modeling changes of material

diffuseambiant specular

https://www.marmoset.co/posts/pbr-texture-conversion/

6

2D Textures: picture of attributes + mapping

• Planar image I (u,v)

0,0

1,1

u

v

7

2D Textures: picture of attributes + mapping

• Planar image I (u,v)+ mapping f: P(x,y,z) → (u,v)

0,0

1,1

u

v
f

8

2D Textures: picture of attributes + mapping

• Planar image I (u,v)+ mapping f: P(x,y,z) → (u,v)

0,0

1,1

u

v
f

depends on
object, effect, etc...

9

Mapping function: flat/planar mapping

f: (x,y,z) → [0,1] x [0,1]

• Planar mapping: f (x,y,z) = (x , y)

Rosalee Wolfe / siggraph.org

10

Mapping function: projective mapping

Map the texture like with a slide projector

Advantage

• No need for texture coordinates!

Inc

•One viewpoint

•Distortions

•Blending

11

Mapping function: spherical mapping

f: (x,y,z) → [0,1] x [0,1]

• Spherical mapping: f (θ,ψ) = (θ/2π , (π/2 – ψ) / π/4)

Rosalee Wolfe / siggraph.org

12

Mapping function: cylindrical mapping

f: (x,y,z) → [0,1] x [0,1]

• Cylindrical mapping: f (θ,z) = (θ/2π , z)

Rosalee Wolfe / siggraph.org

13

Mapping function: cube mapping

f: (x,y,z) → [0,1] x [0,1]

• Cube mapping: depends on x,y,z signs

Rosalee Wolfe / siggraph.org

14

Mapping function: parametric mapping

f: (x,y,z) → [0,1] x [0,1]

• Parametric mapping: f (S(u,v)) = (u,v)

Rosalee Wolfe / siggraph.org

15

Mapping function: uv mapping

f: (x,y,z) → [0,1] x [0,1]
• UV mapping: define uv at each vertex and exploit rasterization

Rosalee Wolfe / siggraph.org

16

2D Textures: picture of attributes + mapping

• Planar image I (u,v) + mapping f: P(x,y,z) → (u,v)
• Store: mesh point + normal + texture coordinates (u,v)
• In a face, interpolate (u,v) using barycentric coords

17

Aliasing problems

Brick wall picture mapped on one face

At the front
• The texture pixels can be seen

At the back
• Many colors in the same pixel
• The one at the center is picked!

18

Aliasing problems

Solution 1: Pre-filtering
• compute multiple samples per pixel
• and average result

Advantage: “ground truth”
Drawback: expensive!

19

Aliasing problems

Solution 2: Pre-filtering
• Pre-compute an “image pyramid” (mip-map) of the texture: down sampling
• Pick the best texture resolution while rendering (rasterization phase)

256x256 128x128 64x64 32x32

Advantage: fast
Drawback: incorrect filter

mip-map sampling

• Multiple options
– Nearest scale, nearest neighbor texel sampling
– Nearest scale, bilinear texel sampling
– Trilinear sampling

• Trilinear sampling
– Find nearest two scales
– Bilinear sampling in each scale
– Linear interpolation of the result

20

https://cglearn.codelight.eu/pub/textures-and-sampling

Trilinear sampling

Mip-mapping

• Andrew Flavell has a nice (old) article on
mip-mapping
http://www.gamasutra.com/view/feature/131708/runtime_mipmap_filtering.php

21

Without mip-mapping With mip-mapping

22

Aliasing problems

Solution 3: Post-filtering
• screen-space anti-aliasing (SSAA)
• multiple algorithms
• more and more used

Advantage: fast, GPU friendly
Drawback: cannot handle all

types of artifacts

23

Creating a texture

• From real data
– colors/normals/coefs,
– stored in 2D images

• Proceduraly
– using a small program
– usually on the GPU

24

Creating a texture

• From real data
– Paint a self similar texture
– use torus topology for

textures

f ?

25

Creating a texture

• From real data
– texture synthesis
– analyse a small sample
– generate a large similar texture

26

Creating a texture

• From real data
– re-shading problem

27

Creating a texture

• Proceduraly
– combination of simple functions

+ Easy to implement
+ Compact
+ Infinite resolution

- Non-intuitive
- Difficult to match existing textures

28

Procedural textures

29

Procedural cellular textures

• Generate a bunch of random points
• For each pixel

– Find the nearest distance to the nearest couple points
– Use these values to determine a color

• Voronoi-like

30

Perlin textures

• Requirements

– Pseudo random
– Arbitrary dimension
– Smooth
– Band pass (one scale)
– Little memory usage
– Implicit evaluation

31

Perlin textures

• Distribute random values at particular locations (a grid)...

32

Perlin textures

• Distribute random values at particular locations (a grid)...
• … and interpolate

33

Perlin textures

• At a given point:

r1

r2

34

Perlin textures

• At a given point:
– Get the associated 2 random values?

r1

r2

35

Perlin textures

• At a given point:
– Get the associated 2 random values?

• Pseudo random function
• Precomputed in an array

r1

r2

36

Perlin textures

• At a given point:
– Get the associated 2 random values?

• Pseudo random function
• Precomputed in an array

– Get relative position of x (between 0 and 1)
– mix!

r1

r2

37

Perlin textures

• At a given point:
– Get the associated 2 random values?

• Pseudo random function
• Precomputed in an array

– Get relative position of x (between 0 and 1)
– mix!

S-Shaped function:

38

Perlin textures

• At a given point:
– Get the associated 2 random values?

• Pseudo random function
• Precomputed in an array

– Get relative position of x (between 0 and 1)
– mix!

39

Perlin textures

• At a given point:
– Get the associated 2 random values?

• Pseudo random function
• Precomputed in an array

– Get relative position of x (between 0 and 1)
– mix!

40

Perlin textures

• Controls
– Frequency: evalNoise(x * freq)

41

Perlin textures

• Controls
– Frequency: evalNoise(x * freq)
– Amplitude: evalNoise(x) * amplitude

42

Perlin textures

• Controls
– Frequency: evalNoise(x * freq)
– Amplitude: evalNoise(x) * amplitude
– Offsetting: evalNoise(x + offset)

43

Perlin textures

• In 2D
– needs a 2D grid
– requires 3 interpolations instead of 1

demo: https://www.shadertoy.com/view/lsf3WH

https://www.shadertoy.com/view/lsf3WH

44

Perlin textures

• In 3D
– same principle, with a 3D grid
– requires 7 interpolations

demo: https://www.shadertoy.com/view/XsXfRH

https://www.shadertoy.com/view/XsXfRH

45

Fractal Perlin textures

• Noise at one scale = 1 octave
• Multiple octave usually used

– Frequency multiplied by 2
each time

– Hence the name octave
– Different amplitudes too

• Sum of all noises =
– Fractal noise

46

Fractal Perlin textures

• Compute the ith texture using:

(relation between frequency and amplitude)

47

Fractal Perlin textures

48

Fractal Perlin textures

49

Fractal Perlin textures

• Marble

• Wood

50

Perlin’s textures : Examples

