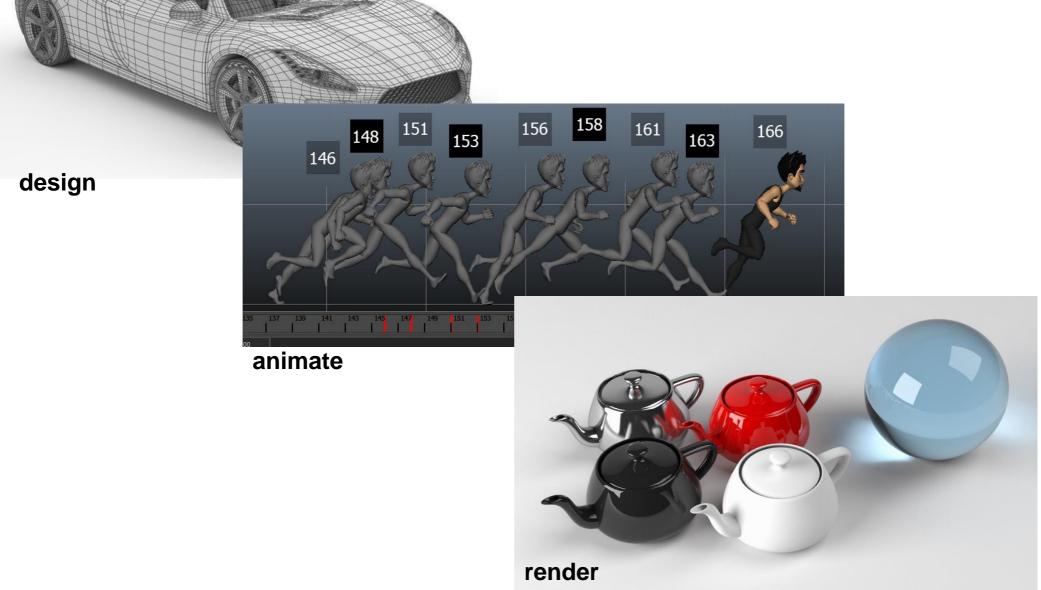
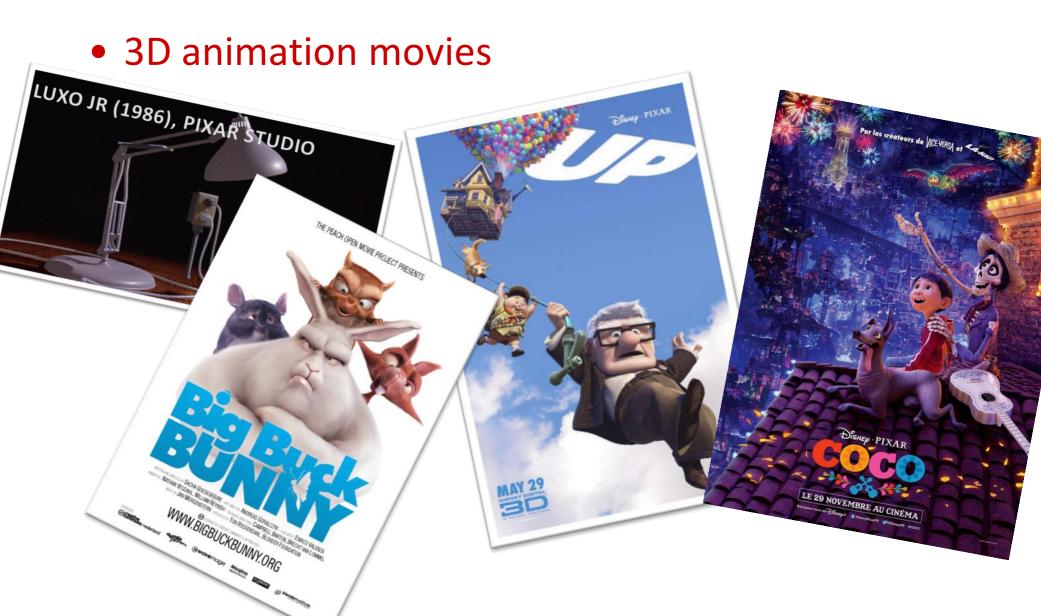


3D GRAPHICS





• Special effects

• Advertising

• Games

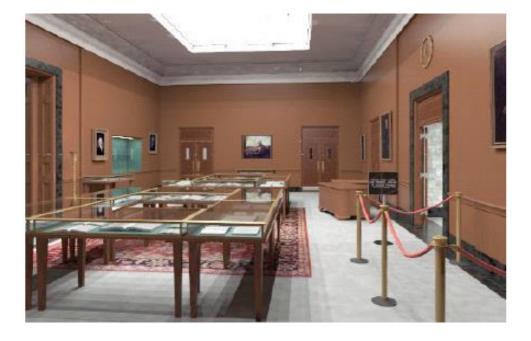
We're just in time. Local forces barely fought off the Separatists' first wave; now the Seppies are landing an armored MTT loaded with battle droids.

Ш

• Simulations & serious games

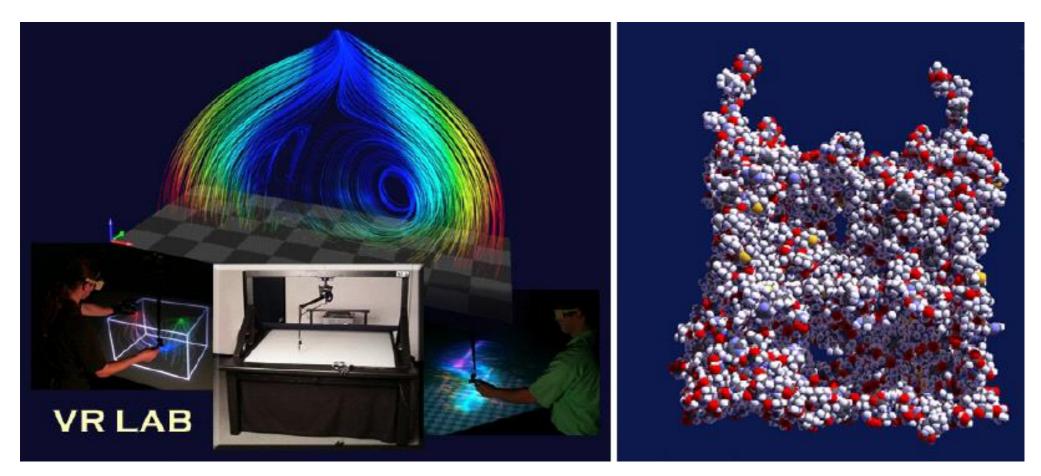
• Computer Aided Design (CAD)

• Architecture

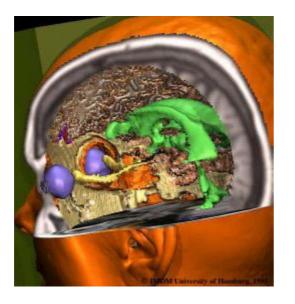


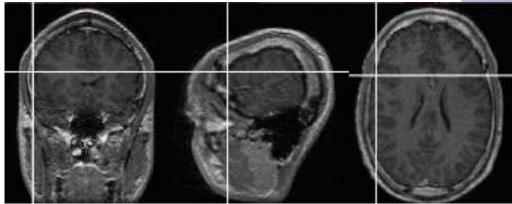
• Virtual/augmented reality

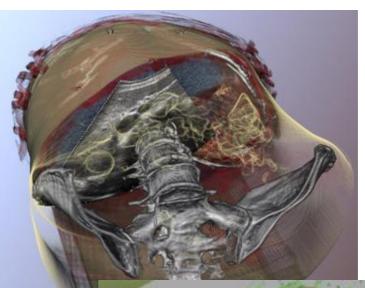
• Visualization

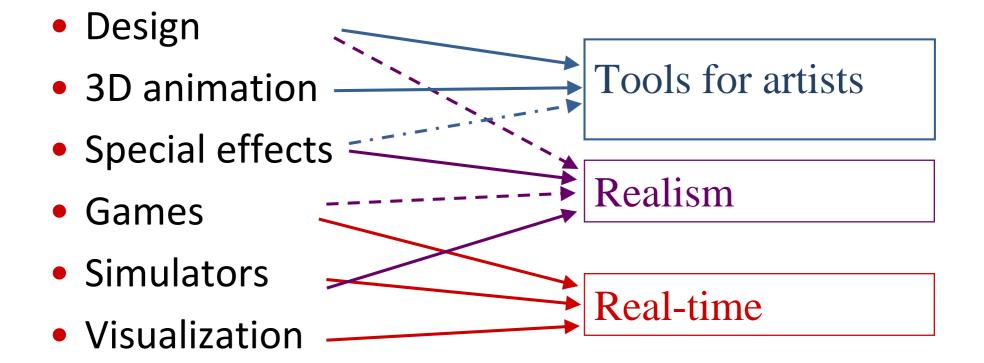


• Medical imaging









What you will learn

- 1. Overview of Computer Graphics (for engineering & research)
 - Modeling : create 3D geometry
 - Animation : move & deform
 - Rendering : 3D scene \rightarrow image
- 2. How the basic techniques work
- **3**. Practice with OpenGL (+Python)
- **4**. Case studies : Practical problems
 - How to choose & combine existing techniques (TD)

What you will **not** learn

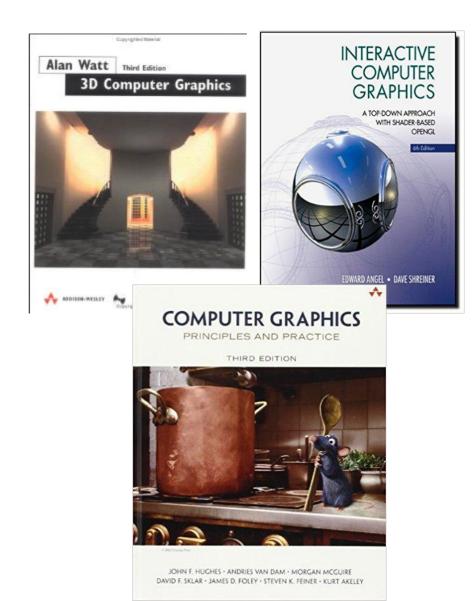
- Mathematical bases (algebra, geometry!)
- Advanced CG techniques in detail
- Advanced Programming the Graphics Hardware (GPU)
- Artistic skills or Game design
- Use of existing software
 (CAD-CAM, 3D Studio Max, Maya, Photoshop, etc)

Text books

No book required

References

- 3D Computer Graphics (Watt, 2000)
- Interactive Computer Graphics (Angel & Shreiner, 20).
- Computer Graphics: Principles and Practices (Hughes et al. 2013)



Organization & overview

1.5h CTD (course & exercises) + 1.5h TP (lab)

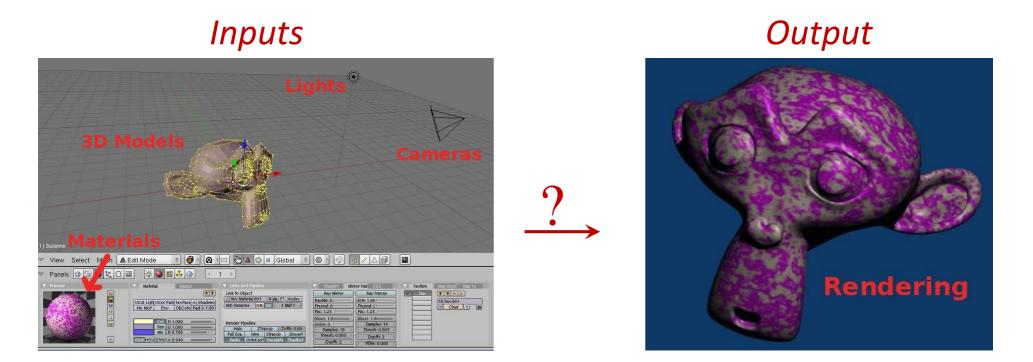
• Part 1: Basic techniques

- 1. Modeling: geometric representations, hierarchical modeling
- 2. Rendering: illumination, shading, textures
- 3. Animation: Keyframing, skinning, collisions
- Part 2: Introduction to advanced methods

3 advanced courses on modeling/rendering/animation

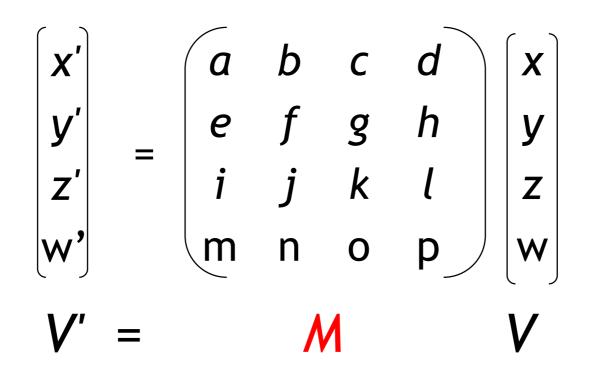
Evaluation: [0,5 Exam + 0,5 OpenGL project]

1: graphics (projective) pipeline



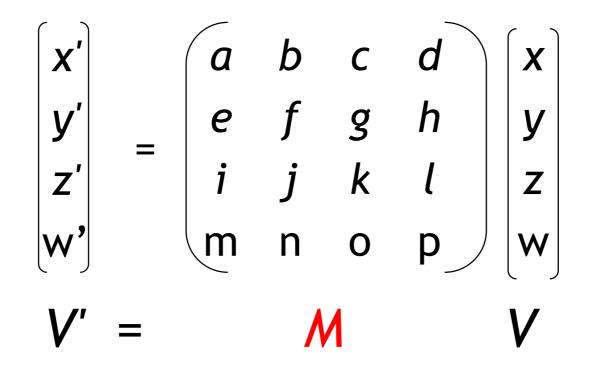
Implemented in the Graphics Hardware (real time) Used by OpenGL

Required: transformations using 4x4 matrices



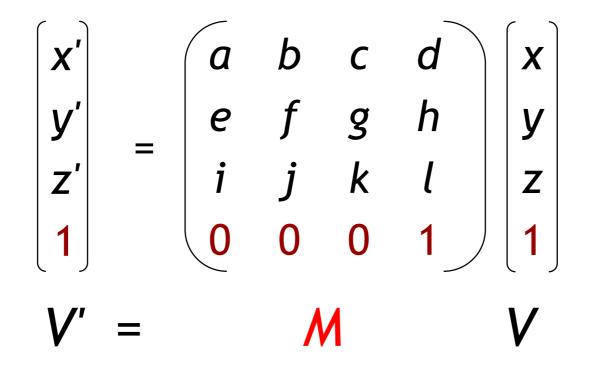
Required: transformations using 4x4 matrices

- "Homogeneous coordinates"
- Needed for projective transformations
- Cartesian to projective coordinates: w=1
- Projective to Cartesian coordinates: divide by w



sub-case: affine transformations

- Start with cartesian coordinates: w=1
- Keep the last line to 1
- The last matrix column enables to express translations!



Typical affine transformations

$$R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\psi & -\sin\psi & 0 \\ 0 & \sin\psi & \cos\psi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation

 $T = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

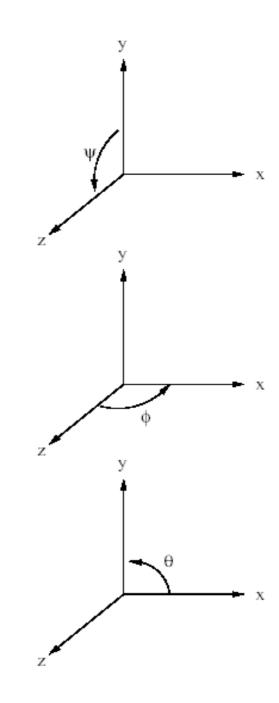
$$R_y = \begin{bmatrix} \cos\phi & 0 & \sin\phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\phi & 0 & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scale

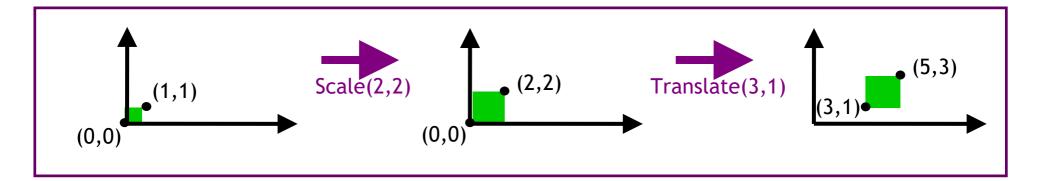
$$T = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations (Euler angles) $R = R_z \cdot R_y \cdot R_x$,

$$R_{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$



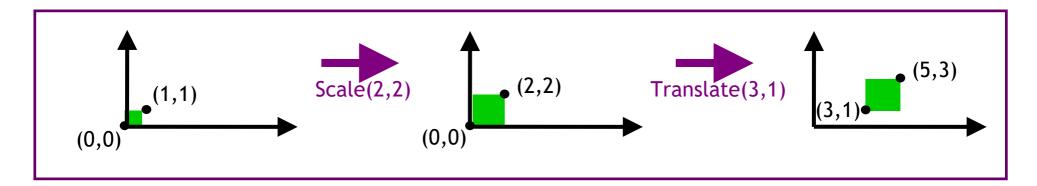
2D example Composition of scale and translate



Multiplication of matrices : p' = T(Sp) = TSp

$$TS = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

TD part 1. *Is the order of transformation important?*



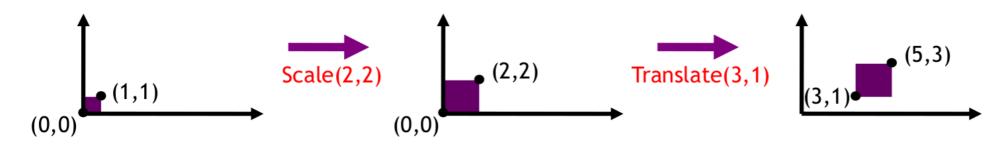
Exercise: (T S) p =? (S T) p

$$ST = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

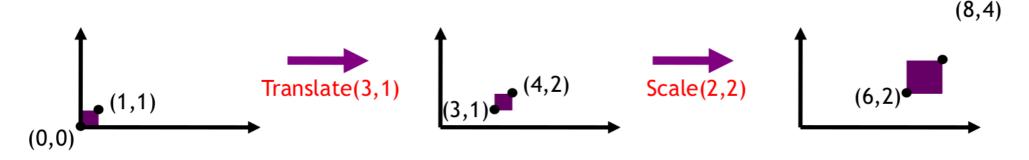
Draw the transformed polygon(s) using ST and TS

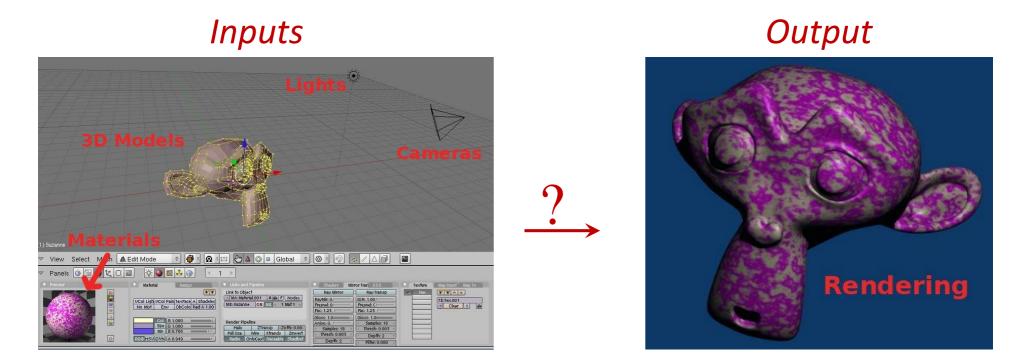
1. Solution: transformations not commutative!!

Scale then translate : p' = T(Sp) = TSp



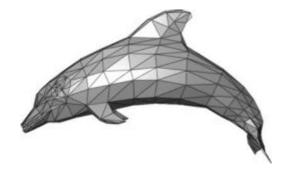
Translate, then scale : p' = S(Tp) = STp





Ok, back to our main question!

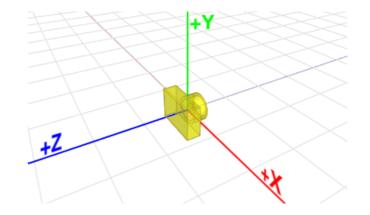
Lets consider that we already have the input data (ignore materials and lights for now)



Mesh, composed of triangle faces (v1,v2,v3)Each vertex contains 3 coords (x,y,z)defined in the local/model frame

v1 = (x1,y1,z1)v2 = (x2,y2,z2)...

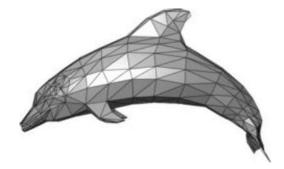
(more in next lecture)



Camera, composed of 4x4 matrices

(more in a few minutes)

Lets consider that we already have the input data (ignore materials and lights for now)

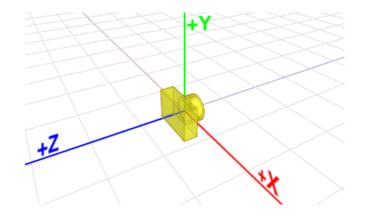


Mesh, composed of triangle faces (v1,v2,v3)Each vertex contains 3 coords (x,y,z)defined in the local/model frame

v1 = (x1,y1,z1) v2 = (x2,y2,z2)

(more in next lecture)

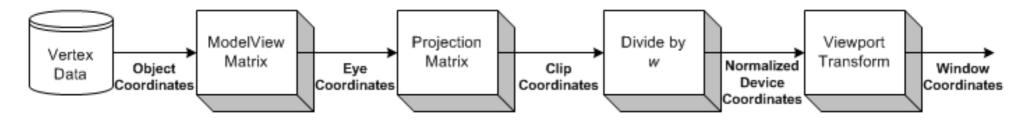
Creating an image from these data can be done in 4 steps!



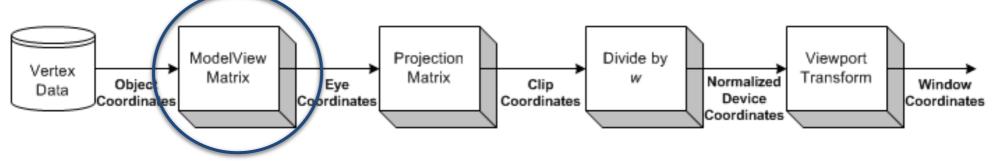
Camera, composed of 4x4 matrices

(more in a few minutes)

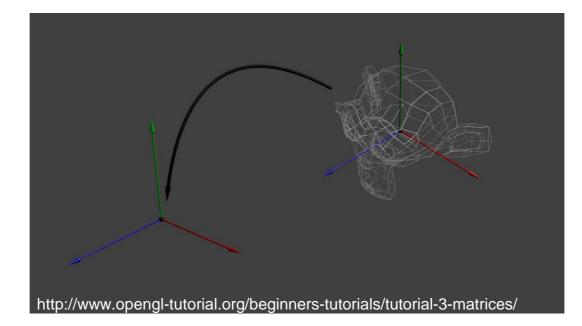
1. Project geometry onto the screen frame



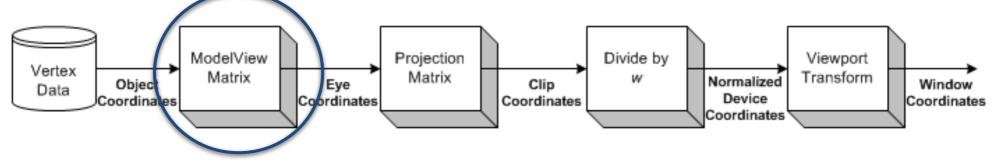
1. Project geometry onto the screen frame



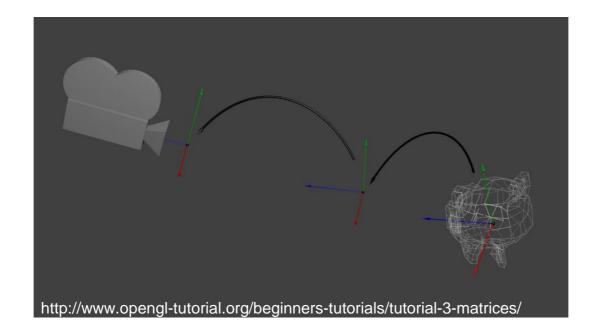
From model to world space (4x4 matrix)



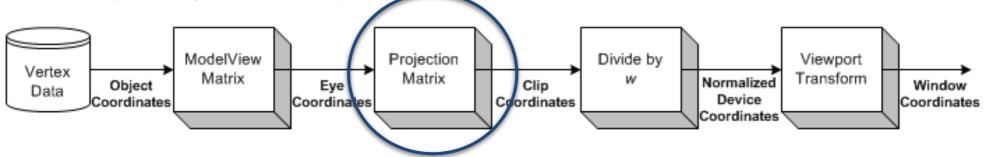
1. Project geometry onto the screen frame



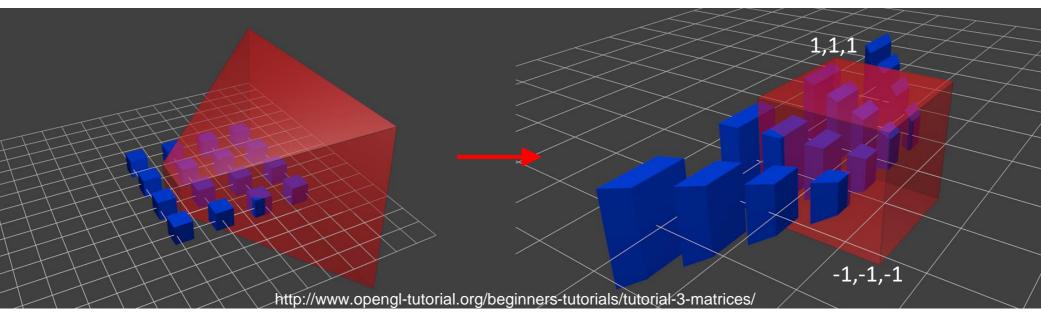
- From model to world space (4x4 matrix)
- From world to camera space (4x4 matrix)



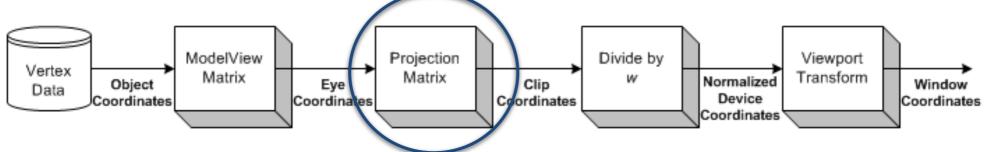
1. Project geometry onto the screen frame



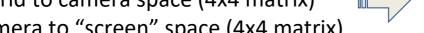
- From model to world space (4x4 matrix)
- From world to camera space (4x4 matrix)
- From camera to "screen" space (4x4 matrix)



1. Project geometry onto the screen frame



- From model to world space (4x4 matrix)
- From world to camera space (4x4 matrix)



can be concatenated!

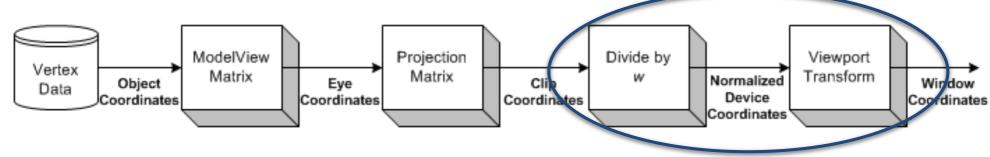
1.7

-1,-1,-1

From camera to "screen" space (4x4 matrix)

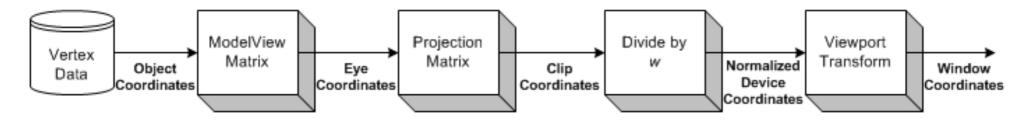
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

1. Project geometry onto the screen frame



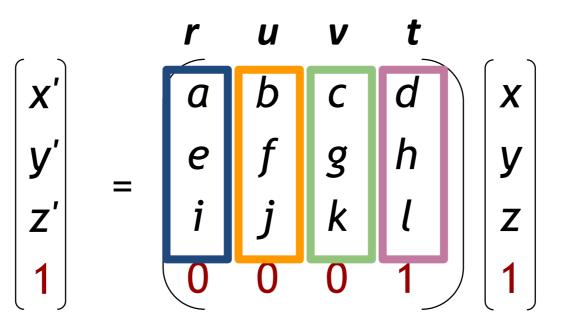
- Back to cartesian coordinates...
- ... and to screen coordinates

1. Project geometry onto the screen frame

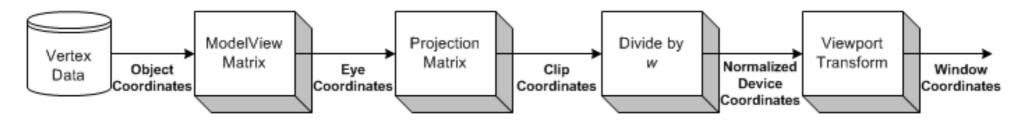


Questions:

• How to (intuitively) define a camera matrix?



1. Project geometry onto the screen frame



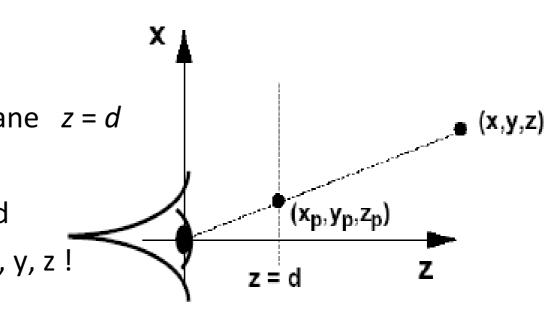
Questions:

• Finding a projection matrix

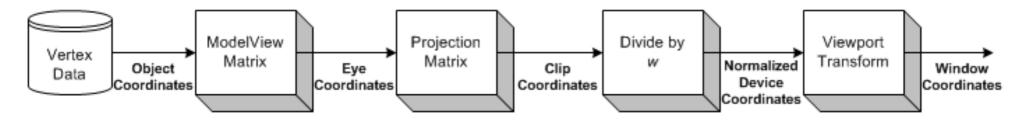
Project all points to the image plane z = d

- **1.** Compute x_p and y_p
- 2. Find the 4x4 matrix M needed

M should be independent from x, y, z !



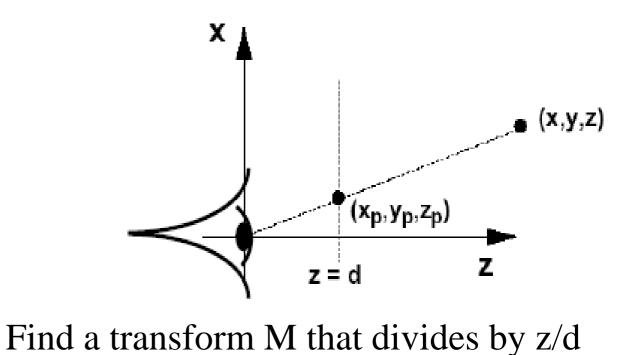
1. Project geometry onto the screen frame



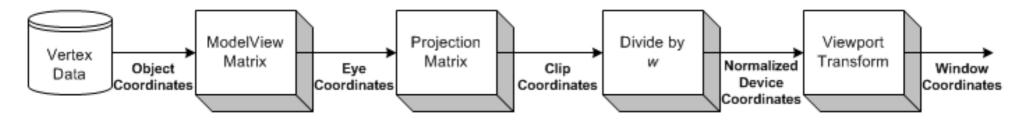
Thales theorem

xp/zp = x/z, with zp=d
yp/zp = y/z, with zp=d

$$x_p = \frac{d \cdot x}{z} = \frac{x}{z/d}$$
$$y_p = \frac{d \cdot y}{z} = \frac{y}{z/d}$$
$$z_p = d$$



1. Project geometry onto the screen frame



Solution:

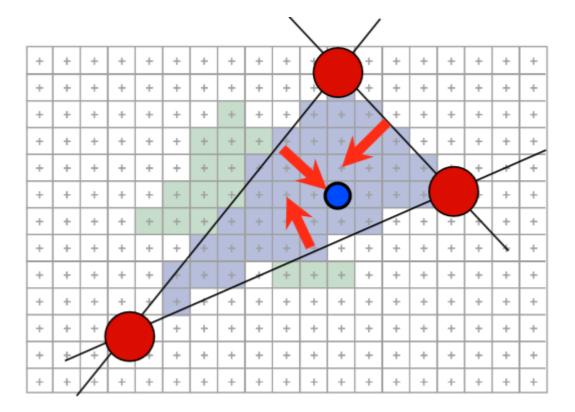
• A transform that divides all coords by $z/d \rightarrow set w to z/d$

New 3D point =
$$\begin{pmatrix} x & x & d/z \\ y & x & d/z \\ d & y \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ z/d \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Projective transform

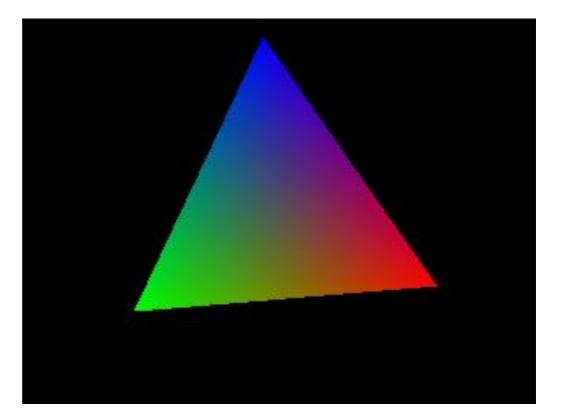
Project geometry onto the screen frame Rasterize triangles

- For each pixel
 - test 3 edge equations
 - o if all pass, draw
- Interpolate vertex data
 - o using barycentric coords
 - o positions/normals/colors/...

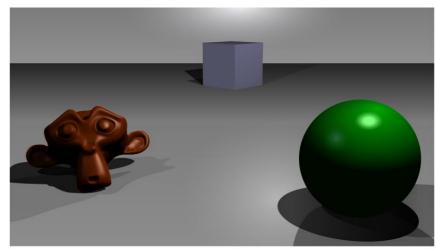


Project geometry onto the screen frame Rasterize triangles

- For each pixel
 - test 3 edge equations
 - o if all pass, draw
- Interpolate vertex data
 - o using barycentric coords
 - o positions/normals/colors/...



- 1. Project geometry onto the screen frame
- 2. Rasterize triangles
- 3. Visibility test
- For each pixel
 - Store min distance to camera
 - o in a "Z-Buffer"
- if new_z<Z-Buffer[x,y]
 - o Z-Buffer[x,y] = new_z
 - o Framebuffer[x,y] = computePixelColor()



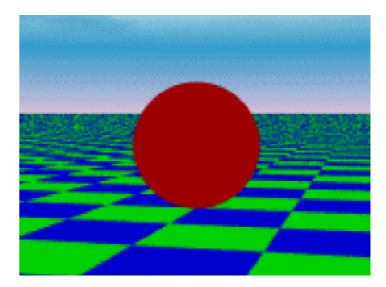
A simple three-dimensional scene



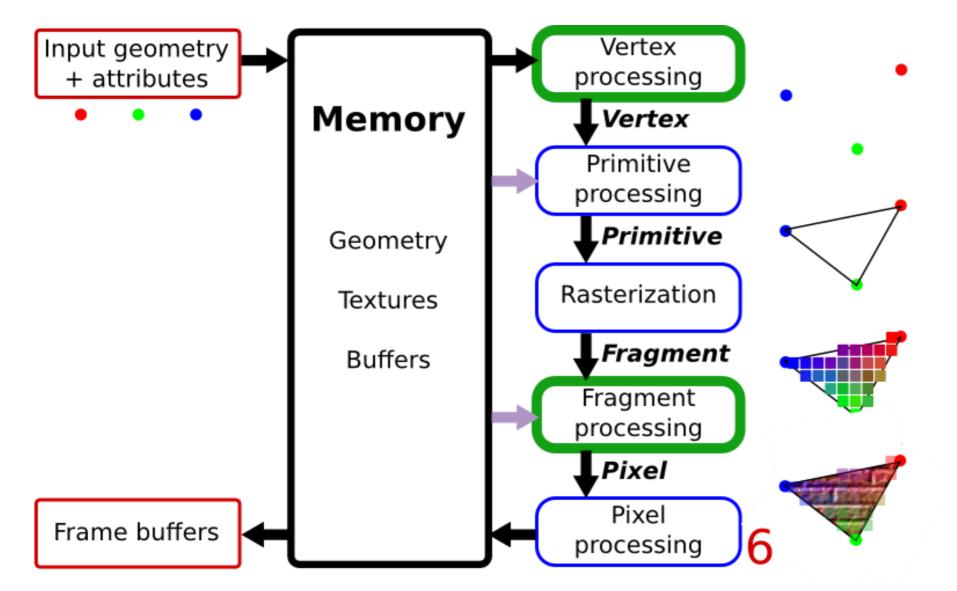
Z-buffer representation

- 1. Project geometry onto the screen frame
- 2. Rasterize triangles
- 3. Visibility test
- 4. Compute pixel color

- Require more than a simple uniform color
 - This is where we will use material and lighting properties
 - o to be continued... in next lectures

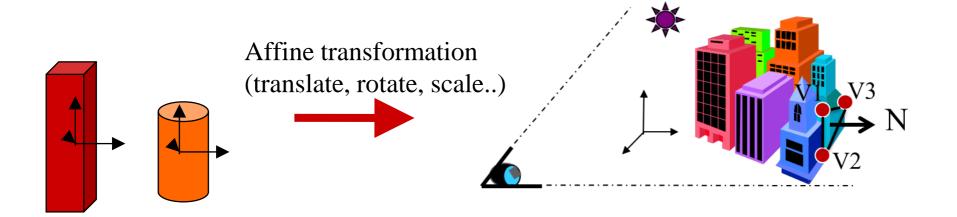


OpenGL pipeline



Bonus

2. Transforming normal vectors?



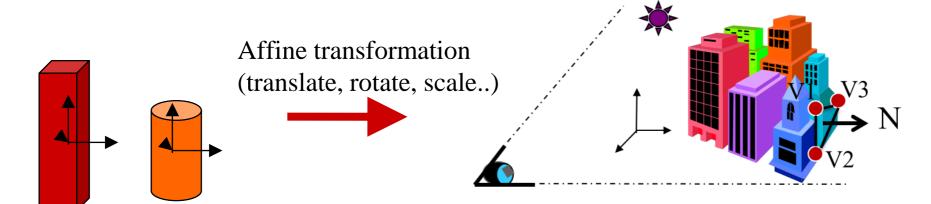
Exercise: How should we transform normal vectors?

Advice : think of the difference between

- affine transformation of points
- linear transformations of vectors

Bonus

2. Transforming normal vectors?



Apply the same transform to vectors **except translations**!

Vectorial transform

$$\begin{pmatrix} x' \\ y' \\ z' \\ z' \\ 0 \end{pmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$

Same 4x4 matrix Set w=0 for vectors

Bonus

2. Transforming normal vectors?

PB: the normal to a triangle does not remain a normal after scaling!



It works for tangent vectors: T= B-A T'=MT = MB-MA=B'-A'

How should we transform normals? Defined by: N.T= 0

• We are looking for G such that GN.MT = 0

 \leftrightarrow N^T G^T. M T = 0 so if G^T.M= Id, it works!

• We choose: $G = (M^{-1})^T$ (for orthogonal matrices, G=M)