
3D GRAPHICS

design

animate

render



Computer Graphics

• 3D animation movies



Computer Graphics

• Special effects



Computer Graphics

• Advertising



Computer Graphics

• Games



Computer Graphics

• Simulations & serious games



Computer Graphics

• Computer Aided Design (CAD)



Computer Graphics

• Architecture



Computer Graphics

• Virtual/augmented reality



Computer Graphics

• Visualization



Computer Graphics

• Medical imaging



Computer Graphics

• Design

• 3D animation

• Special effects

• Games

• Simulators

• Visualization

Realism

Real-time

Tools for artists



What you will learn

1. Overview of Computer Graphics  (for engineering & research)

• Modeling : create 3D geometry

• Animation : move & deform

• Rendering : 3D scene → image

2. How the basic techniques work

3. Practice with OpenGL (+Python)

4. Case studies : Practical problems

• How to choose & combine existing techniques (TD)



What you will not learn

• Mathematical bases (algebra, geometry!)

• Advanced CG techniques in detail

• Advanced Programming the Graphics Hardware (GPU)

• Artistic skills or Game design

• Use of existing software

(CAD-CAM, 3D Studio Max, Maya, Photoshop, etc)
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Text books
*No book required*

References
• 3D Computer Graphics (Watt, 

2000)

• Interactive Computer Graphics 
(Angel & Shreiner, 20).

• Computer Graphics: Principles and 
Practices (Hughes et al. 2013)



Organization & overview

1.5h CTD (course & exercises) + 1.5h TP (lab)

Evaluation:   [0,5 Exam + 0,5 OpenGL project]

• Part 1: Basic techniques
1. Modeling: geometric representations, hierarchical modeling

2. Rendering: illumination, shading, textures 

3. Animation: Keyframing, skinning, collisions

• Part 2:  Introduction to advanced methods
3 advanced courses on modeling/rendering/animation



1: graphics (projective) pipeline

Implemented in the Graphics Hardware (real time)
Used by OpenGL

?

Inputs Output



1: graphics pipeline

Required: transformations using 4x4 matrices
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V'  =          M V



1: graphics pipeline

Required: transformations using 4x4 matrices
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• “Homogeneous coordinates”
• Needed for projective transformations
• Cartesian to projective coordinates: w=1
• Projective to Cartesian coordinates: divide by w

V'  =          M V



1: graphics pipeline

sub-case: affine transformations
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• Start with cartesian coordinates: w=1
• Keep the last line to 1
• The last matrix column enables to express translations!

V'  =          M V



Translation 

Rotations (Euler angles)

Scale

Typical affine 

transformations



2D example

Composition of scale and translate 
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Multiplication of matrices :   p'  =  T ( S p )  =  TS p
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TD part

1. Is the order of transformation important?

ST  = ?=

Exercise :   (T S) p   =? (S T) p
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Draw the transformed polygon(s) using ST and TS
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1. Solution: transformations not commutative!!

Scale then translate : p'  =  T ( S p )  =  TS p

Translate, then scale : p'  =  S ( T p )  =  ST p



1: graphics pipeline

Ok, back to our main question!

?

Inputs Output



1: graphics pipeline

Lets consider that we already have the input data (ignore materials and lights for now)

Mesh, composed of triangle faces (v1,v2,v3)

Each vertex contains 3 coords (x,y,z)

defined in the local/model frame

v1 = (x1,y1,z1)

v2 = (x2,y2,z2)

… 

(more in next lecture)

Camera, composed of 4x4 matrices

(more in a few minutes)



1: graphics pipeline

Lets consider that we already have the input data (ignore materials and lights for now)

Mesh, composed of triangle faces (v1,v2,v3)

Each vertex contains 3 coords (x,y,z)

defined in the local/model frame

v1 = (x1,y1,z1)

v2 = (x2,y2,z2)

… 

(more in next lecture)

Camera, composed of 4x4 matrices

(more in a few minutes)

Creating an image from these data can be done in 4 steps!



1: graphics pipeline

1. Project geometry onto the screen frame



1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/



1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)
• From world to camera space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/



1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)
• From world to camera space (4x4 matrix)
• From camera to “screen” space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

-1,-1,-1

1,1,1



1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)
• From world to camera space (4x4 matrix)
• From camera to “screen” space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

-1,-1,-1

1,1,1

can be concatenated!



1: graphics pipeline

1. Project geometry onto the screen frame

• Back to cartesian coordinates... 
• … and to screen coordinates

-1,-1,-1

1,1,1



1: graphics pipeline

1. Project geometry onto the screen frame

-1,-1,-1

1,1,1

Questions:
● How to (intuitively) define a camera matrix?
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1: graphics pipeline

1. Project geometry onto the screen frame

Questions:
● Finding a projection matrix

Project all points to the image plane z = d

1. Compute xp and yp

2. Find the 4x4 matrix M needed

M should be independent from x, y, z !



1: graphics pipeline

1. Project geometry onto the screen frame

Thales theorem  

xp/zp = x/z,  with zp=d

yp/zp = y/z,  with zp=d

Find a transform M that divides by z/d



1: graphics pipeline

1. Project geometry onto the screen frame

Solution:
● A transform that divides all coords by z/d →  set w to z/d

New 3D point =

Projective 

transform



1: graphics pipeline

1. Project geometry onto the screen frame
2. Rasterize triangles

• For each pixel
○ test 3 edge equations
○ if all pass, draw

• Interpolate vertex data
○ using barycentric coords
○ positions/normals/colors/...



1: graphics pipeline

1. Project geometry onto the screen frame
2. Rasterize triangles

• For each pixel
○ test 3 edge equations
○ if all pass, draw

• Interpolate vertex data
○ using barycentric coords
○ positions/normals/colors/...



1: graphics pipeline

1. Project geometry onto the screen frame
2. Rasterize triangles
3. Visibility test

• For each pixel 
○ Store min distance to camera
○ in a “Z-Buffer”

• if new_z<Z-Buffer[x,y]
○ Z-Buffer[x,y] = new_z
○ Framebuffer[x,y] = computePixelColor()



1: graphics pipeline
1. Project geometry onto the screen frame
2. Rasterize triangles
3. Visibility test
4. Compute pixel color

• Require more than a simple uniform color
○ This is where we will use material and lighting properties
○ to be continued… in next lectures



OpenGL pipeline



Bonus

2. Transforming normal vectors?  

Exercise: How should we transform normal vectors?

Advice : think of the difference between

• affine transformation of points

• linear transformations of vectors

Affine transformation

(translate, rotate, scale..)



Bonus

2. Transforming normal vectors?  
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Vectorial 

transform

Same 4x4 matrix

Set w=0 for vectors

Apply the same transform to vectors except translations!

Affine transformation

(translate, rotate, scale..)



Bonus

2. Transforming normal vectors?  

PB: the normal to a triangle does not remain a normal after scaling!

It works for tangent vectors:

T= B-A      T’=MT = MB-MA=B’-A’

How should we transform normals?

Defined by: N.T= 0
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• We are looking for G such that  GN.MT = 0  

↔  NT GT . M T = 0         …. so if GT.M= Id, it works!

• We choose: G = (M-1)T (for orthogonal matrices, G=M)


