
3D GRAPHICS

design

animate

render

Computer Graphics

• 3D animation movies

Computer Graphics

• Special effects

Computer Graphics

• Advertising

Computer Graphics

• Games

Computer Graphics

• Simulations & serious games

Computer Graphics

• Computer Aided Design (CAD)

Computer Graphics

• Architecture

Computer Graphics

• Virtual/augmented reality

Computer Graphics

• Visualization

Computer Graphics

• Medical imaging

Computer Graphics

• Design

• 3D animation

• Special effects

• Games

• Simulators

• Visualization

Realism

Real-time

Tools for artists

What you will learn

1. Overview of Computer Graphics (for engineering & research)

• Modeling : create 3D geometry

• Animation : move & deform

• Rendering : 3D scene → image

2. How the basic techniques work

3. Practice with OpenGL (+Python)

4. Case studies : Practical problems

• How to choose & combine existing techniques (TD)

What you will not learn

• Mathematical bases (algebra, geometry!)

• Advanced CG techniques in detail

• Advanced Programming the Graphics Hardware (GPU)

• Artistic skills or Game design

• Use of existing software

(CAD-CAM, 3D Studio Max, Maya, Photoshop, etc)

15

Text books
No book required

References
• 3D Computer Graphics (Watt,

2000)

• Interactive Computer Graphics
(Angel & Shreiner, 20).

• Computer Graphics: Principles and
Practices (Hughes et al. 2013)

Organization & overview

1.5h CTD (course & exercises) + 1.5h TP (lab)

Evaluation: [0,5 Exam + 0,5 OpenGL project]

• Part 1: Basic techniques
1. Modeling: geometric representations, hierarchical modeling

2. Rendering: illumination, shading, textures

3. Animation: Keyframing, skinning, collisions

• Part 2: Introduction to advanced methods
3 advanced courses on modeling/rendering/animation

1: graphics (projective) pipeline

Implemented in the Graphics Hardware (real time)
Used by OpenGL

?

Inputs Output

1: graphics pipeline

Required: transformations using 4x4 matrices

x'

y'

z'

w’

=

x

y

z

w

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

V' = M V

1: graphics pipeline

Required: transformations using 4x4 matrices

x'

y'

z'

w’

=

x

y

z

w

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

• “Homogeneous coordinates”
• Needed for projective transformations
• Cartesian to projective coordinates: w=1
• Projective to Cartesian coordinates: divide by w

V' = M V

1: graphics pipeline

sub-case: affine transformations

x'

y'

z'

1

=

x

y

z

1

a

e

i

0

b

f

j

0

c

g

k

0

d

h

l

1

• Start with cartesian coordinates: w=1
• Keep the last line to 1
• The last matrix column enables to express translations!

V' = M V

Translation

Rotations (Euler angles)

Scale

Typical affine

transformations

2D example

Composition of scale and translate

TS =

2

0

0

2

0

0

1

0

0

1

3

1

2

0

0

2

3

1=

Multiplication of matrices : p' = T (S p) = TS p

0 0 1 0 0 1 0 0 1

(0,0)

(1,1) (2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TD part

1. Is the order of transformation important?

ST = ?=

Exercise : (T S) p =? (S T) p

1

0

0

1

3

1

0 0 1

2

0

0

2

0

0

0 0 1

Draw the transformed polygon(s) using ST and TS

(0,0)

(1,1) (2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

1. Solution: transformations not commutative!!

Scale then translate : p' = T (S p) = TS p

Translate, then scale : p' = S (T p) = ST p

1: graphics pipeline

Ok, back to our main question!

?

Inputs Output

1: graphics pipeline

Lets consider that we already have the input data (ignore materials and lights for now)

Mesh, composed of triangle faces (v1,v2,v3)

Each vertex contains 3 coords (x,y,z)

defined in the local/model frame

v1 = (x1,y1,z1)

v2 = (x2,y2,z2)

…

(more in next lecture)

Camera, composed of 4x4 matrices

(more in a few minutes)

1: graphics pipeline

Lets consider that we already have the input data (ignore materials and lights for now)

Mesh, composed of triangle faces (v1,v2,v3)

Each vertex contains 3 coords (x,y,z)

defined in the local/model frame

v1 = (x1,y1,z1)

v2 = (x2,y2,z2)

…

(more in next lecture)

Camera, composed of 4x4 matrices

(more in a few minutes)

Creating an image from these data can be done in 4 steps!

1: graphics pipeline

1. Project geometry onto the screen frame

1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)
• From world to camera space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)
• From world to camera space (4x4 matrix)
• From camera to “screen” space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

-1,-1,-1

1,1,1

1: graphics pipeline

1. Project geometry onto the screen frame

• From model to world space (4x4 matrix)
• From world to camera space (4x4 matrix)
• From camera to “screen” space (4x4 matrix)

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

-1,-1,-1

1,1,1

can be concatenated!

1: graphics pipeline

1. Project geometry onto the screen frame

• Back to cartesian coordinates...
• … and to screen coordinates

-1,-1,-1

1,1,1

1: graphics pipeline

1. Project geometry onto the screen frame

-1,-1,-1

1,1,1

Questions:
● How to (intuitively) define a camera matrix?

x'

y'

z'

1

=

x

y

z

1

a

e

i

0

b

f

j

0

c

g

k

0

d

h

l

1

r u v t

1: graphics pipeline

1. Project geometry onto the screen frame

Questions:
● Finding a projection matrix

Project all points to the image plane z = d

1. Compute xp and yp

2. Find the 4x4 matrix M needed

M should be independent from x, y, z !

1: graphics pipeline

1. Project geometry onto the screen frame

Thales theorem

xp/zp = x/z, with zp=d

yp/zp = y/z, with zp=d

Find a transform M that divides by z/d

1: graphics pipeline

1. Project geometry onto the screen frame

Solution:
● A transform that divides all coords by z/d → set w to z/d

New 3D point =

Projective

transform

1: graphics pipeline

1. Project geometry onto the screen frame
2. Rasterize triangles

• For each pixel
○ test 3 edge equations
○ if all pass, draw

• Interpolate vertex data
○ using barycentric coords
○ positions/normals/colors/...

1: graphics pipeline

1. Project geometry onto the screen frame
2. Rasterize triangles

• For each pixel
○ test 3 edge equations
○ if all pass, draw

• Interpolate vertex data
○ using barycentric coords
○ positions/normals/colors/...

1: graphics pipeline

1. Project geometry onto the screen frame
2. Rasterize triangles
3. Visibility test

• For each pixel
○ Store min distance to camera
○ in a “Z-Buffer”

• if new_z<Z-Buffer[x,y]
○ Z-Buffer[x,y] = new_z
○ Framebuffer[x,y] = computePixelColor()

1: graphics pipeline
1. Project geometry onto the screen frame
2. Rasterize triangles
3. Visibility test
4. Compute pixel color

• Require more than a simple uniform color
○ This is where we will use material and lighting properties
○ to be continued… in next lectures

OpenGL pipeline

Bonus

2. Transforming normal vectors?

Exercise: How should we transform normal vectors?

Advice : think of the difference between

• affine transformation of points

• linear transformations of vectors

Affine transformation

(translate, rotate, scale..)

Bonus

2. Transforming normal vectors?

x'

y'

z'

0

=

x

y

z

0

a

e

i

0

b

f

j

0

c

g

k

0

d

h

l

1

Vectorial

transform

Same 4x4 matrix

Set w=0 for vectors

Apply the same transform to vectors except translations!

Affine transformation

(translate, rotate, scale..)

Bonus

2. Transforming normal vectors?

PB: the normal to a triangle does not remain a normal after scaling!

It works for tangent vectors:

T= B-A T’=MT = MB-MA=B’-A’

How should we transform normals?

Defined by: N.T= 0

N
N

N’

A

B
T

T’

A’

B’

M

• We are looking for G such that GN.MT = 0

↔ NT GT . M T = 0 …. so if GT.M= Id, it works!

• We choose: G = (M-1)T (for orthogonal matrices, G=M)

