Using Git

Matthieu Moy
Matthieu.Moy@imag.fr

2018-2019

)1

Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <1/13>

Collaborative Development: The Old Good Time

@ Basic problems: Several persons working on the same set of files
@ “Hey, you've modified the same file as me, how do we merge?”,
@ “Your modifications are broken, your code doesn't even compile. Fix
your changes before sending it to me!”,
@ Historical solutions:
» Never two person work at the same time. = Doesn't scale up!
Unsafe.
» People work on the same directory (same machine, NFS, ACLs ...)
= Painful because of (2) above.
» People work trying to avoid conflicts, and merge later.

1
Grenoble
I
Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <4/13>
ntro
Merging
Space of possible revisions
(arbitrarily represented in 2D)
Mine . Me‘rged revision
EEE——
*—> ¢
A Ancestor Yours
Grenoble
)
Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <6/13>

Git: Basic concepts

@ Each working directory contains:
» The files you work on (as usual)
» The history, or “repository” (in the directory .git/)
@ Basic operations:
git clone: get a copy of an existing repository (files + history)
git commit: create a new revision in a repository
git pull: get revisions from a repository
git push: send revisions to a repository
git add, git rm and git mv: tell Git which files should be tracked
git status: know what’s going on
@ Forus:
» Each team creates a shared repository, in addition to work trees

YVYVYVYVYY

)1

Matthieu Moy (Matthieu.Moy@imag.fr) Git 20182019 <9/13>

Backups: The Old Good Time

@ Basic problems:
» “Oh, my disk crashed.” / “Someone has stolen my laptop!”
> “@#%!!, I've just deleted this important file!”
» “Oops, | introduced a bug a long time ago in my code, how can |
see how it was before?”
@ Historical solutions:
» Replicate:
$ cp -r ~/project/ ~/backup/
(or better, copy to a remote machine like your Ensimag account)
» Keep history:
$ cp -r ~/project/ ~/backup/project-2013-02-02
LN

Grenoble

I
Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <3/13>
Intro
Merging: Problem and Solution
@ My version @ Your version @ Common ancestor
#include <stdio.h> finclude <stdio.h> #include <stdio.h>
int main () { int main () | int main () {
printf ("Hello"); printf ("Hello!\n"); printf ("Hello");
return EXIT_SUCCESS; return 0; return 0;
} } }
This merge can be done for you by an automatic tool
Merging relies on history!
Collaborative development linked to backups
A
Grenoble
I
Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <5/13>

Revision Control System: Basic Idea

@ Keep track of history:

» commit = snapshot of the current state,
» Meta-data (user's name, date, descriptive message,. . .) recorded in
commit.

@ Use it for merging/collaborative development.

» Each user works on its own copy,
» User explicitly “takes” modifications from others when (s)he wants.

smm,}" '

Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <7/13>

Advices Using Git (for beginners)

@ Never exchange files outside Git’s control (email, scp, usb key),
except if you really know what you're doing;

@ Always use git commit with —a;

@ Make a git push aftereach git commit -a (use git pull if
needed);

@ Do git pull regularly, to remain synchronized with your
teammates. You need to make a git commit -a before you can
make a git pull (this is to avoid mixing manual changes with
merges).

@ Do not make useless changes to your code. Do not let your
editor/IDE reformat code that is not yours.

Grenoble

I

Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <11/13>

Séance Machine

Séance Machine

@ Enoncé : Stage Unix, Partie Unix Avancé, Séance 1 (Ensiwiki)
@ A terminer en libre service aprés la séance encadrée
@ cf. aussi « Introduction a Git » dans EnsiWiki

N

Grenoble INP \
1

ensimAg ,}]

Matthieu Moy (Matthieu.Moy@imag.fr) Git 2018-2019 <13/13 >

	Revision Control System
	Git: Basic Principles
	Advices Using Git
	Séance Machine

