Théorie des Langages 1

Cours 2 : Opérations sur les langages, automates finis

L. Rieg

Grenoble INP - Ensimag, 1re année

Année 2023-2024

Définition

$$\begin{array}{ccc} L \cup M & \stackrel{\mathrm{def}}{=} \\ L.M & \stackrel{\mathrm{def}}{=} \\ \forall i > 0, \ L^i & \stackrel{\mathrm{def}}{=} \\ L^0 & \stackrel{\mathrm{def}}{=} \\ L^* & \stackrel{\mathrm{def}}{=} \end{array}$$

et
$$L^+$$
 $\stackrel{\text{d}}{=}$

Définition

Soient L et M deux langages sur V (L et $M \subseteq V^*$). Par analogie avec les opérations sur les mots, on définit :

Notation : on pourra noter LM au lieu de L.M.

Soient
$$L = \{ab, cd\}$$
 et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\}$$
 et $LM = \{abab, abbba, cdab, cdbba\}$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM =$$

$$L^* =$$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \left\{ a^n b^n c^p d^{2p} \mid n, p \ge 0 \right\}$$

$$L^* =$$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \{a^n b^n c^p d^{2p} \mid n, p \ge 0\}$$

$$L^* = \{a^{n_1} b^{n_1} a^{n_2} b^{n_2} \cdots a^{n_k} b^{n_k} \mid k \ge 0 \land n_1, \dots, n_k \ge 0\}$$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Exemple

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \{a^n b^n c^p d^{2p} \mid n, p \ge 0\}$$

$$L^* = \{a^{n_1} b^{n_1} a^{n_2} b^{n_2} \cdots a^{n_k} b^{n_k} \mid k \ge 0 \land n_1, \dots, n_k \ge 0\}$$

Question

Si L est un langage, peut-on avoir $\varepsilon \in L^+$?

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Exemple

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \{a^n b^n c^p d^{2p} \mid n, p \ge 0\}$$

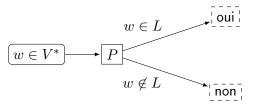
$$L^* = \{a^{n_1} b^{n_1} a^{n_2} b^{n_2} \cdots a^{n_k} b^{n_k} \mid k \ge 0 \land n_1, \dots, n_k \ge 0\}$$

Question

Si L est un langage, peut-on avoir $\varepsilon \in L^+$? Oui, ssi $\varepsilon \in L$ Exemple : $L = \{\varepsilon, a\}, L^2 = \{\varepsilon, a, aa\}, L^+ = \{a^n \mid n \geq 0\} = L^*$

Les automates finis

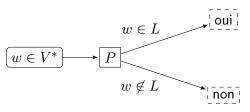
On s'intéresse à définir des « programmes » qui reconnaissent des langages.



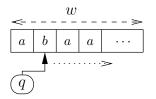
Les programmes les plus « simples » sont les automates finis.

Les automates finis

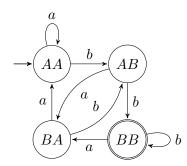
On s'intéresse à définir des « programmes » qui reconnaissent des langages.



Les programmes les plus « simples » sont les automates finis.

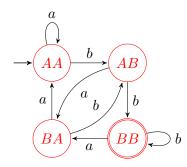


À chaque pas d'exécution, l'automate peut changer d'état et/ou lire un symbole et se positionner sur le symbole suivant.

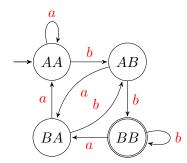


Voici un automate fini. Il contient :

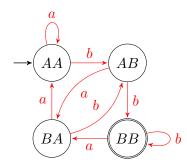
• des états



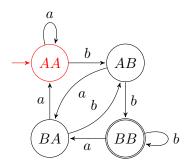
- des états
- le vocabulaire



- des états
- le vocabulaire
- des transitions



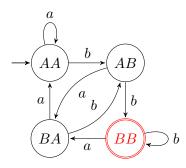
- des états
- le vocabulaire
- des transitions
- des états initiaux



Voici un automate fini.

Il contient :

- des étatsle vocabulaire
- des transitions
- des états initiaux
- des états acceptants



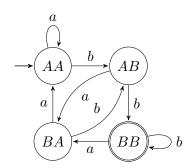
Voici un automate fini.

Il contient:

- des états
- le vocabulaire
- des transitions
- des états initiaux
- des états acceptants

Utilisation d'un automate :

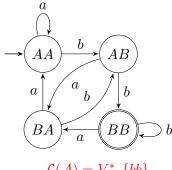
- 1. commencer dans un état initial
- 2. lire les lettres d'un mot en suivant les transitions
- 3. à la fin du mot, regarder si l'état est acceptant



Voici un automate fini.

Il contient :

- des états
- le vocabulaire
- des transitions
- des états initiaux
- des états acceptants



$$\mathcal{L}(\mathcal{A}) = V^*. \{bb\}$$

Utilisation d'un automate :

- commencer dans un état initial
- 2. lire les lettres d'un mot en suivant les transitions
- 3. à la fin du mot, regarder si l'état est acceptant

Définition formelle

Définition

Un automate fini (AF) est un quintuplet $\langle Q, V, \delta, I, F \rangle$, où :

- ullet Q est un ensemble fini d'états
- V est le vocabulaire d'entrée
- $\delta \subseteq Q \times (V \cup \{\varepsilon\}) \times Q$ est la relation de transition
- $I \subseteq Q$ est l'ensemble des états initiaux
- $F \subseteq Q$ est l'ensemble des états acceptants (ou finaux ou finals)

Définition formelle

Définition

Un automate fini (AF) est un quintuplet $\langle Q, V, \delta, I, F \rangle$, où :

- ullet Q est un ensemble fini d'états
- V est le vocabulaire d'entrée
- $\delta \subseteq Q \times (V \cup \{\varepsilon\}) \times Q$ est la relation de transition
- ullet $I\subseteq Q$ est l'ensemble des états initiaux
- ullet $F\subseteq Q$ est l'ensemble des états acceptants (ou finaux ou finals)

Relation de transition

- Pour $a \in V$, si $(p, a, q) \in \delta$, alors étant dans l'état p et lisant un a, l'automate peut passer dans l'état q et avancer dans le mot.
- Si $(p, \varepsilon, q) \in \delta$, alors étant dans l'état p, l'automate peut passer à l'état q sans avancer dans le mot.

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

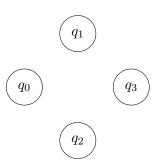
$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

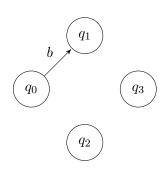
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

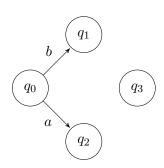
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

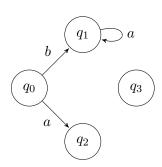
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (\mathbf{q_1}, \mathbf{a}, \mathbf{q_1}), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

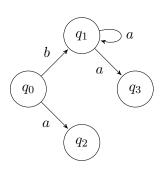
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

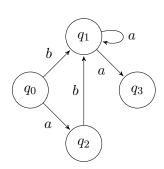
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

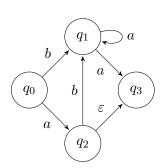
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

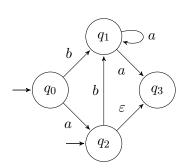
$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



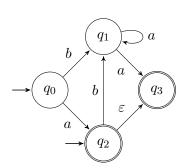
Exemple et représentation graphique

Soit A l'automate défini par :

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, a, q_3), (q_2, b, q_1), (q_2, \varepsilon, q_3)\}$$

$$I = \{q_0, q_2\}, F = \{q_2, q_3\}$$



 $\mathcal{L}(A)$

= « Ens. des mots permettant de passer d'un état initial à un état final »

 $\mathcal{L}(A)$

- = « Ens. des mots permettant de passer d'un état initial à un état final »
- = « Les mots qui étiquettent un chemin d'un état initial à un état final »

$\mathcal{L}(A)$

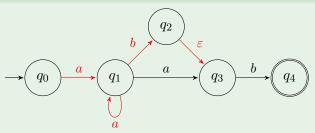
- = « Ens. des mots permettant de passer d'un état initial à un état final »
- = « Les mots qui étiquettent un chemin d'un état initial à un état final »

Exemple (Chemins pour aab) q_2 ba

$\mathcal{L}(A)$

- = « Ens. des mots permettant de passer d'un état initial à un état final »
- = « Les mots qui étiquettent un chemin d'un état initial à un état final »

Exemple (Chemins pour aab)

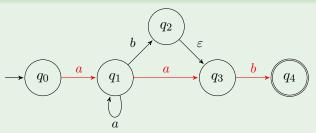


$$\chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)$$

$\mathcal{L}(A)$

- = « Ens. des mots permettant de passer d'un état initial à un état final »
- = « Les mots qui étiquettent un chemin d'un état initial à un état final »

Exemple (Chemins pour aab)



$$\chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)$$

$$\chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)$$

$\mathcal{L}(A)$

- = « Ens. des mots permettant de passer d'un état initial à un état final »
- = « Les mots qui étiquettent un chemin d'un état initial à un état final »

Définition (Chemin)

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate. L'ensemble des chemins dans A est défini inductivement de la façon suivante :

Base Pour tout $p \in Q$, () est un chemin (vide) dans A de p à p;

Induction Pout tous $p,q,q'\in Q$ et $a\in V\cup\{\varepsilon\}$, si $(p,a,q)\in\delta$ et χ est un chemin dans A de q à q', alors $(p,a,q).\chi$ est un chemin dans A de p à q'.

Convention

Dans un chemin non vide, on ne note en général pas le « () » final.

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A.

Ce chemin est de longueur n et de trace $a_1a_2\cdots a_n$.

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A. Ce chemin est de longueur n et de trace $a_1 a_2 \cdots a_n$.

Exemples

```
\chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)() longueur : trace : \chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)() longueur : trace :
```

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A. Ce chemin est de longueur n et de trace $a_1 a_2 \cdots a_n$.

Exemples

 $\chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)()$ longueur : 4 trace : $\chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)()$ longueur : trace :

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A. Ce chemin est de longueur n et de trace $a_1 a_2 \cdots a_n$.

Exemples

```
\chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)() longueur : 4 trace : aab \chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)() longueur : trace :
```

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A. Ce chemin est de longueur n et de trace $a_1 a_2 \cdots a_n$.

Exemples

 $\begin{array}{lll} \chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)() & \text{longueur}: \mathbf{4} & \text{trace}: aab \\ \chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)() & \text{longueur}: \mathbf{3} & \text{trace}: aab \end{array}$

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A.

Ce chemin est de longueur n et de trace $a_1 a_2 \cdots a_n$.

$$\operatorname{lgr}: \begin{cases} () & \mapsto & 0 \\ (p,a,q)\chi & \mapsto & 1+\operatorname{lgr}(\chi) \end{cases} \operatorname{tr}: \begin{cases} () & \mapsto & \varepsilon \\ (p,a,q)\chi & \mapsto & a\cdot\operatorname{tr}(\chi) \end{cases}$$

Exemples

$$\begin{array}{lll} \chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)() & \text{longueur}: 4 & \text{trace}: aab \\ \chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)() & \text{longueur}: 3 & \text{trace}: aab \end{array}$$

Définition

Soit $(q_0, a_1, q_1)(q_1, a_2, q_2) \cdots (q_{n-1}, a_n, q_n)()$ un chemin dans A.

Ce chemin est de longueur n et de trace $a_1a_2\cdots a_n$.

$$\mathsf{lgr}: \begin{cases} () & \mapsto & 0 \\ (p,a,q)\chi & \mapsto & 1+\mathsf{lgr}(\chi) \end{cases} \qquad \mathsf{tr}: \begin{cases} () & \mapsto & \varepsilon \\ (p,a,q)\chi & \mapsto & a\cdot\mathsf{tr}(\chi) \end{cases}$$

Exemples

$$\begin{array}{lll} \chi_1 = (q_0, a, q_1)(q_1, a, q_1)(q_1, b, q_2)(q_2, \varepsilon, q_3)() & \text{longueur}: \mathbf{4} & \text{trace}: aab \\ \chi_2 = (q_0, a, q_1)(q_1, a, q_3)(q_3, b, q_4)() & \text{longueur}: \mathbf{3} & \text{trace}: aab \end{array}$$

Définition (Mot reconnu par un automate)

Un mot w est reconnu par A si et seulement si il existe un chemin dans A d'un état initial à un état final, de trace w.

Exercice 1

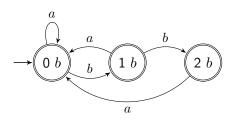
Construire un automate fini qui reconnaît le langage

 $L = \{w \in \{a,b\}^* \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$

Exercice 1

Construire un automate fini qui reconnaît le langage

 $L = \{w \in \{a,b\}^* \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$



Exercice 2

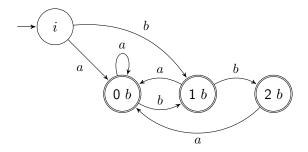
Construire un automate fini qui reconnaît le langage

$$L = \{w \in \{a, b\}^+ \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$$

Exercice 2

Construire un automate fini qui reconnaît le langage

 $L = \{w \in \{a, b\}^+ \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$



Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- $1. \ \, \mathsf{Card}(I) > 1 \ \, \text{(plus d'un état intial), et/ou}$
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r, \text{ et/ou}$
- 3. $\exists (q, \varepsilon, p) \in \delta$

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. $\operatorname{Card}(I) > 1$ (plus d'un état intial), et/ou
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r$, et/ou
- 3. $\exists (q, \varepsilon, p) \in \delta$

Dans les trois cas, « on ne sait pas quoi faire » :

- 1. « où dois-je commencer? »
- 2. « je suis en q, je vois le symbole a, où vais-je? »
- 3. « je suis en q, \forall symbole je peux choisir de passer en p ou non »

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. $\operatorname{Card}(I) > 1$ (plus d'un état intial), et/ou
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r$, et/ou
- 3. $\exists (q, \varepsilon, p) \in \delta$

Dans les trois cas, « on ne sait pas quoi faire » :

- 1. « où dois-je commencer? »
- 2. « je suis en q, je vois le symbole a, où vais-je? »
- 3. « je suis en q, \forall symbole je peux choisir de passer en p ou non »

Non-déterminisme :

• ne donne pas immédiatement un « programme » reconnaisseur

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. $\operatorname{Card}(I) > 1$ (plus d'un état intial), et/ou
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r, \text{ et/ou}$
- 3. $\exists (q, \varepsilon, p) \in \delta$

Dans les trois cas, « on ne sait pas quoi faire » :

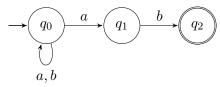
- 1. « où dois-je commencer? »
- 2. « je suis en q, je vois le symbole a, où vais-je? »
- 3. « je suis en q, \forall symbole je peux choisir de passer en p ou non »

Non-déterminisme :

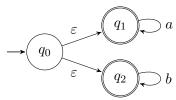
- ne donne pas immédiatement un « programme » reconnaisseur
- mais facilite la définition des automates!

Exemples

1. Non-déterministe, sans ε -transition



2. Non-déterministe, avec ε -transition



À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Sera en particulier utilisé en architecture/CEP et en TL2

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Sera en particulier utilisé en architecture/CEP et en TL2

- L'automate a un seul état initial
- •
- •
- •

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Sera en particulier utilisé en architecture/CEP et en TL2

- L'automate a un seul état initial
- δ est une fonction partielle : $Q \times V \rightharpoonup Q$: Si $(p, a, q) \in \delta$, on pourra noter $\delta(p, a) = q$
- •
- •

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. $\operatorname{Card}(I) = 1$ (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Sera en particulier utilisé en architecture/CEP et en TL2

- L'automate a un seul état initial
- δ est une fonction partielle : $Q \times V \rightharpoonup Q$: Si $(p, a, q) \in \delta$, on pourra noter $\delta(p, a) = q$
- Donne directement un « programme » reconnaisseur
- •

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Sera en particulier utilisé en architecture/CEP et en TL2

- L'automate a un seul état initial
- δ est une fonction partielle : $Q \times V \rightharpoonup Q$: Si $(p, a, q) \in \delta$, on pourra noter $\delta(p, a) = q$
- Donne directement un « programme » reconnaisseur
- Mais certaines transitions peuvent manquer!

Définition

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction totale : $Q \times V \rightarrow Q$.

Définition

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction totale : $Q \times V \to Q$. Un automate peut être non-déterministe mais complet !

Définition

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction totale : $Q \times V \to Q$. Un automate peut être non-déterministe mais complet !

Comment compléter un automate (sans changer son langage)?

Définition

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction totale : $Q \times V \to Q$. Un automate peut être non-déterministe mais complet !

Comment compléter un automate (sans changer son langage)?

- 1. Ajouter un état puits : un état non acceptant qui boucle pour tous les symboles
- 2. Ajouter toutes les transitions manquantes vers cet état.

Définition

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction totale : $Q \times V \to Q$. Un automate peut être non-déterministe mais complet !

Comment compléter un automate (sans changer son langage)?

- 1. Ajouter un état puits : un état non acceptant qui boucle pour tous les symboles
- 2. Ajouter toutes les transitions manquantes vers cet état.

Questions : Veut-on toujours un automate déterministe complet ? Est-ce toujours mieux ?

Extension de la fonction de transition aux mots

Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD complet. On définit la fonction $\delta^*:Q\times {\color{red}V^*}\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

Extension de la fonction de transition aux mots

Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD complet. On définit la fonction $\delta^*:Q\times V^*\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

$$\bullet \ \delta^*(p,\varepsilon)=p$$

Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD complet. On définit la fonction $\delta^*:Q\times V^*\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

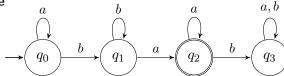
- $\delta^*(p,\varepsilon) = p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD complet. On définit la fonction $\delta^* : Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\delta^*(p, aw) = \delta^*(\delta(p, a), w)$

Exemple

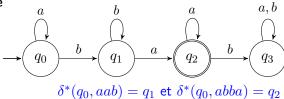


Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD complet. On définit la fonction $\delta^* : Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Exemple

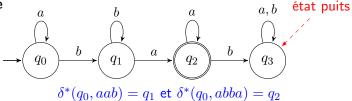


Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD complet. On définit la fonction $\delta^* : Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Exemple

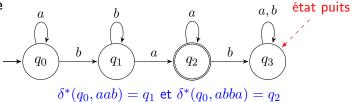


Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD complet. On définit la fonction $\delta^*:Q\times {\color{red}V^*}\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

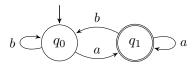
- $\bullet \ \delta^*(p,\varepsilon)=p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Exemple

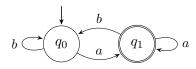


L'extension de la fonction de transition est parfois notée δ au lieu de δ^* .

$$L = \{a, b\}^* \{a\}^+$$

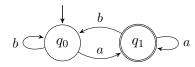


$$L = \{a, b\}^* \{a\}^+$$



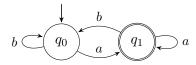
 $bbaba \in L$

$$L = \{a, b\}^* \{a\}^+$$



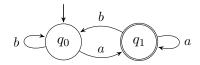
 $bbaba \in L \iff \delta^*(q_0, bbaba) \in F$

$$L = \{a, b\}^* \{a\}^+$$



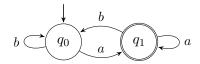
 $bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$

$$L = \{a, b\}^* \{a\}^+$$



$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F$$

$$L = \{a, b\}^* \{a\}^+$$



$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$b \qquad q_0 \qquad q_1$$

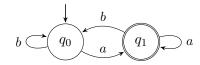
$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$b \qquad q_0 \qquad a \qquad q_1 \qquad q_1 \qquad q_1 \qquad q_1 \qquad q_2 \qquad q_3 \qquad q_4 \qquad q_4 \qquad q_4 \qquad q_5 \qquad q_5 \qquad q_5 \qquad q_6 \qquad$$

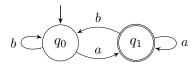
$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F$$

$$L = \{a, b\}^* \{a\}^+$$



$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F \iff q_1 \in F$$

$$L = \{a, b\}^* \{a\}^+$$



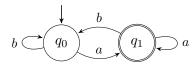
$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F \iff q_1 \in F$$

 $\begin{aligned} & \textbf{fonction} \text{ reconnaître}(q: \texttt{\'etat}, w: \texttt{mot}) \text{ } \textbf{renvoie Bool\'een} = \\ & \textbf{tant que } w \neq \varepsilon \text{ faire} \\ & s \leftarrow \texttt{premier_symbole}(w) \\ & w \leftarrow \texttt{reste_mot}(w) \\ & q \leftarrow \delta(q, s) \end{aligned}$

fin tant que renvoyer $(q \in F)$

renvoyer $(q \in F)$

$$L = \{a, b\}^* \{a\}^+$$



$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F \iff q_1 \in F$$

 $\begin{aligned} & \textbf{fonction} \text{ reconnaître}(q: \text{\'etat}, w: \text{mot}) \text{ } \textbf{renvoie Bool\'een} = \\ & \textbf{tant que } w \neq \varepsilon \text{ faire} \\ & s \leftarrow \text{premier_symbole}(w) \\ & w \leftarrow \text{reste_mot}(w) \\ & q \leftarrow \delta(q, s) \end{aligned}$

fin tant que renvoyer $(q \in F)$

 $\forall w \in V^*$, $w \in \mathcal{L}(A)$ si et seulement si reconnaître $(q_0, w) = \mathbf{vrai}$

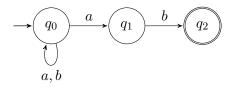
Automates équivalents

Deux automates A et A' sont équivalents ssi $\mathcal{L}(A) = \mathcal{L}(A')$.

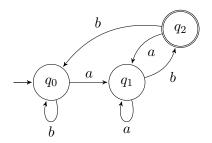
Automates équivalents

Deux automates A et A' sont équivalents ssi $\mathcal{L}(A) = \mathcal{L}(A')$.

ullet Automate A:



• Automate A':



Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .

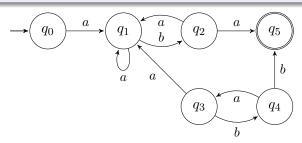
Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .



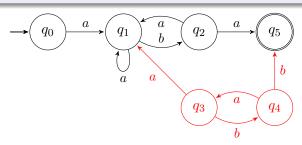
Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .



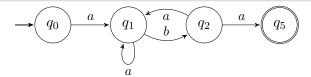
Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .



Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

$$\mathcal{L}(A) = \{ w \in V^* \mid \delta^*(q_0, w) \in F \}$$

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

$$\mathcal{L}(A) = \{ w \in V^* \mid \delta^*(q_0, w) \in F \}$$

L'automate A est initialement connecté si et seulement si

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

$$\mathcal{L}(A) = \{ w \in V^* \mid \delta^*(q_0, w) \in F \}$$

L'automate A est initialement connecté si et seulement si

$$\forall p \in Q, \ \exists w \in V^*, \ \delta^*(q_0, w) = p$$