Langages et Décidabilité Modélisation par automates Grammaires : Séance 4

Marie-Laure Potet

Grenoble INP-Ensimag

November 28, 2024

Summary

Classification des langages et algorithmes

Rappel:

- Langages réguliers
- Langages hors-contexte
- Langages sous-contexte
- Langages généraux
- Autres langages $(P(V^*) L(G), \forall G)$

Soit L un langage. Le problème du mot est :

 $w \in L$?

Un programme répondant à ce problème est appelé un reconnaisseur.

Problème du mot

Résultats et paradigmes de reconnaisseurs :

Classe	Décidable	paradigme de reconnaisseur
Régulier	oui	automate d'état fini
Hors-contexte	oui	automate à pile
Sous-contexte	oui	automate borné linéairement
Général	non	Machine de Turing

On va voir : programmation des reconnaisseurs pour sous-contexte, hors-contexte et régulier.

Autres problèmes

Classe	Régulier	Hors-contexte	Sous-contexte	Général
$L(G) = \emptyset$	oui	oui	non	non
L(G) infini	oui	oui	non	non
L(G1)=L(G2)	oui	non	non	non

oui : il existe un algorithme

non: il n'existe pas d'algorithme

Comment?

Summary

Reconnaisseurs sous-contexte

Soit $G = (V_T, V_N, S, R)$ avec les règles de la forme $u \to v$ et $|u| \le |v|$. Il n'y a donc pas d' ϵ -règle. On veut répondre à la question :

$$w \in L(G)$$
?

Principe:

- ① On énumère toutes les chaînes $x \in (V_T \cup V_N)^*$, accessibles à partir de S et telles que $|x| \le |w|$.
- 2 si on a trouvé w la réponse est positive
- si on n'a pas trouvé w la réponse est négative (ça ne sert à rien de continuer on ne pourra pas générer w)

 \Rightarrow On gère l'ensemble E des chaînes x en cours de traitement et un dictionnaire pour traiter au plus une fois chaque chaîne x.

Opérations utiles

Application des règles :

$$next(d) = \{xvy : \exists u . d = xuy \ et \ u \rightarrow v \in R\}$$

 \Rightarrow applique à d toutes les règles possibles à toutes les occurrences. Exemple :

$$aA \rightarrow aa$$
, $Ba \rightarrow bb$ et next(BaA)={Baa, bbA}.

 Opérations sur l'ensemble E : choix d'un élément (choix (E)) + opérations ensemblistes classiques (-,∪,...)

Algorithme

```
Procedure Reconnaitre (w : Mot) is
begin
   E := \{S\};
   dictio := {};
   while not (E=\{\}) and not (w in E) loop
     d := choix(E);
     E := E - \{d\};
     dictio := dictio \/ {d};
     E := E \setminus / next(d) - \{m : |m| > |w|\} - dictio ;
   end loop ;
   if (w in E) then putline("le mot est dans L(G)");
   else putline ("le mot n'est pas dans L(G)") ;
end Reconnaitre :
```

< 9/1 >

Exemple

1) Exemple:

$$S \rightarrow aSBc \mid abc \quad cB \rightarrow Bc \quad bB \rightarrow bb$$

On s'intéresse à la chaîne : ababcc

- 2) Arrêt du Programme : on traite au plus une fois chaque chaîne de longueur |w|. On a :
 - dictio croît strictement
 - $E \cap dictio = \emptyset$ (invariant)

 \Rightarrow Au pire on énumère toutes les chaînes x sur $(V_T \cup V_N)$ telles que $|x| \leq |w|$.

Summary

Reconnaisseur hors-contexte

On peut simplifier le programme précédent pour les hors-contexte en utilisant les dérivations canoniques (par exemple la plus à gauche).

On réécrit uniquement le non-terminal le + à gauche. Rappel :

$$uAvBr \Longrightarrow^* u\alpha vBr \Longrightarrow^* u\alpha v\beta r$$

équivalent à

$$uAvBr \Longrightarrow^* uAv\beta r \Longrightarrow^* u\alpha v\beta r$$

• on peut vérifier/éliminer les symboles de V_T en début de chaîne

$$av \Longrightarrow^* w$$

 $avec \ a \in V_T$
si et seulement si
 w s'écrit aw'

On suppose pour simplifier pas de ϵ -règle ni de 1-règle.

Opérations utiles

- On manipule des couples (d, w) avec :
 - $d \in (V_T \cup V_N)^*$: mot de dérivation
 - $w \in V_T^*$: mot à reconnaître
 - Objectif : $d \Longrightarrow^* w$?
- configuration initiale : (S, w) et w le mot à reconnaitre
- Opération next:
 - **1** $next(xd, xw) = \{(d, w)\}$ ssi $x \in V_T$ (effacement)
 - 2 $next(xd, yw) = \emptyset$ ssi $x \in V_T$ et $x \neq y$
 - **3** $next(Ad, w) = \{(ud, w) | A → u ∈ R \}$
- configuration gagnante : (ϵ, ϵ)

Algorithme

```
Procedure Reconnaitre (w : Mot) is
begin
   E := \{(S, W)\};
   while not(E=\{\}) and not((epsilon, epsilon)) in E)
   loop
    (d, r) := choix(E);
    E := E - \{(d, r)\};
    E := E \setminus \{m \mid m \text{ in next}(d, r) \text{ and } |m| \le |w|\};
   end loop ;
   if ((epsilon, epsilon) in E)
      then putline ("le mot est dans L(G)") ;
      else putline ("le mot n'est pas dans L(G)") ;
end Reconnaitre ;
```

⇒ Automate à pile : d est la pile.

Exemple

- $\begin{array}{ll} \text{(1)} & \textit{S} \rightarrow \textit{aSb} \\ \text{(2)} & \textit{S} \rightarrow \textit{ab} \end{array}$

Et:

- aabb
- aaba

Arrêt ? Soit (m, w). On fait soit décroitre w soit |w| - |m| (poids de 2 pour les non-terminaux et de 1 pour les terminaux).

⇒ on ne peut pas faire mieux ... sauf pour des sous-classes de grammaires: au plus un successeur par la fonction next (TL2)

Grammaire LL(1)

(1)
$$S \rightarrow aSb$$
 (2) $S \rightarrow c$

Choisir (1) si le mot à reconnaitre commence par a, choisir (2) si le mot à reconnaitre commence par c, refuser le mot sinon.

- $next(xd, xw) = \{(d, w)\}$ ssi $x \in V_T$ (effacement)
- **1** $next(Ad, w) = \{(ud, w) \mid A \to u \in R \}$

 \Rightarrow un seul choix max : E devient vide ou un singleton ($E = \{(d, r)\}$ ou $E = \emptyset$). Lecture caractère par caractère, d devient une suite d'appels de fonctions

```
def function S () :
    ch=next_char()
    if ch==a :
        ch=next_char(); S() ; ch=next_char(); if ch!=b : erreur();
    elif ch==c : ;
    else : erreur();
```

Summary

Reconnaisseur régulier : plusieurs solutions

Soit $A = (V, Q, q0, F, \delta)$ un automate déterministe avec q_erreur l'état puits. Exemple : a^+b^* et

 $\textit{A} = (\{\textit{a},\textit{b}\},\{\textit{q}\textit{0},\textit{q}\textit{1},\textit{q}_\textit{erreur}\},\textit{q}\textit{0},\{\textit{q}\textit{1},\textit{q}\textit{2}\},\delta) \text{avec } \delta$:

	а	b
q0	q1	q_erreur
q1	q1	q2
q2	q_erreur	q2
q_erreur	q_erreur	q_erreur

- ⇒ Plusieurs implémentations possibles :
 - codage de l'automate par un tableau :
 - delta : array [Q, V] of Q ; une variable du programme initialisée par la fonction de transition δ
 - codage par flot de contrôle.
 - état=label, transition=goto.

Opérations utiles

- V'=V ∪ {\$, erreur}
- lire_car : la fonction de lecture retournant :
 - l'élément courant dans V
 - ou \$ si fin de chaîne
 - ou erreur si pas un élément de V.

Implémentation 1

```
Procedure Reconnaitre() is
begin
   q_{cour} := q0;
   c := lire_car();
   while (c in V) and not (q_cour=q_erreur) loop
     q_cour := delta(c, q_cour);
     c := lire car();
   end loop ;
   if (q cour in F) and (c=\$)
      then putline ("le mot est dans L(A)");
      else putline ("le mot n'est pas dans L(A)") ;
end Reconnaitre :
```

Implémentation 2

```
Procedure Reconnaitre() is
begin
   q0 : c := lire car() ;
         if c=a then goto q1; else goto q_erreur;
   q1 : c := lire car() ;
         if c=a then goto q1;
         if c=b then goto g2;
         if c=$ then goto fin ; else goto q_erreur ;
   q2 : c := lire_car();
         if c=b then goto q2;
         if c=$ then goto fin ; else goto q_erreur ;
   q_erreur : putline ("le mot n'est pas dans L(A)") ;
              goto reconnaitre ;
  fin : putline("le mot est dans L(A)") ;
  reconnaitre :
end Reconnaitre :
```

Implémentation 1 (non déterministe)

Ici delta(q, c) fournit un ensemble d'états (potentiellement vide)

```
begin
   Q cour := \{q0\};
   c := lire car();
   while (c in V) and not(Q cour={}) loop
     State := Q cour; Q cour :={};
     wile not (State={}) loop
        q := choix(State); State := State -{q};
        Q_cour := Q_cour \/ delta(c, q);
     end loop ;
     c := lire_car();
   end loop ;
   if not (0 cour /\ F = \{\}\) and (c=$)
      then putline ("le mot est dans L(A)") ;
      else putline ("le mot n'est pas dans L(A)") ;
end ;
```

Summary

Programmes à états finis

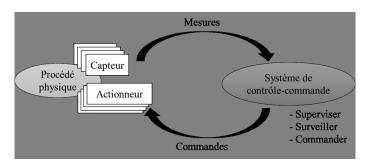
Un automate permet de modéliser (si nombre fini de valeurs):

- les entrées admises par un programme
- les états du programme sous la forme des valeurs des variables
- les comportements du programme : la suite des états et des transitions qui peuvent s'enchaîner

Domaines d'applications : par exemple les programmes de contrôle/commande (commande d'un pool d'ascenseurs, gestion de réservoirs de fluide, . . .)

- ⇒ On peut alors vérifier des propriétés sur ce modèle :
 - états dangereux non atteignables (le niveau d'un réservoir doit rester entre 2 valeurs min/max)
 - comportements interdits (on ne peut pas ouvrir 2 vannes en même temps)
 - . . .

Domaine d'application



Automate industriel, programme de contrôle/commande

Cycle: 1) acquisition des données 2) traitement 3) résultats

Nombre fini d'états : état interne des capteurs/actionneurs Exemple : gestion de réservoirs de fluide. Propriété : le niveau d'une cuve doit rester entre 2 valeurs min/max.

Illustration

- Produire un automate à partir d'un programme
- Combiner cet automate avec son contexte d'utilisation
- Vérifier des propriétés
- ⇒ utilise les opérations sur les automates :
 - atteignabilité d'état
 - intersection d'automate = ensemble des chemins ayant des comportements de A₁ et A₂.

⇒ Démarche automatisable

Exemple

Soit P le programme suivant :

```
x:=0; y := 1;
while (true) loop
  z := lire();
  if z=a then  x:=x+2; y := y+1;
  elsif z=b then  x:=x+1; y := y+2;
  elsif z=c then  x:=x+1; y := y+1;
  if x > 2 then x:=x-2;
  if y > 3 then y:=y-3;
end loop;
```

- un nombre fini d'entrées : a, b ou c
- On peut énumérer l'ensemble des valeurs prises par les couples (x, y) avec :

$$x \in 0..2 \land y \in 1..3$$

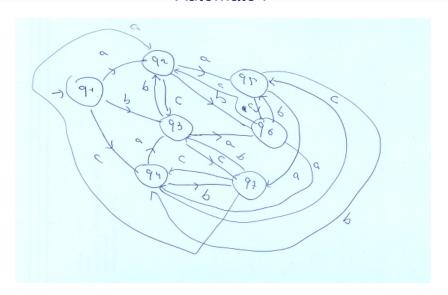
Automate P

	а	b	С
q1 : x=0 & y=1	q2 : x=2 & y=2	q3 : x=1 & y=3	q4 : x=1 & y=2
q2 : x=2 & y=2	q5 : x=2 & y=3	q6 : x=1 & y=1	q3 : x=1 & y=3
q3 : x=1 & y=3	q6 : x=1 & y=1	q2 : x=2 & y=2	q7 : x=2 & y=1
q4 : x=1 & y=2	q3 : x=1 & y=3	q7 : x=2 & y=1	q5 : x=2 & y=3
q5 : x=2 & y=3	q7 : x=2 & y=1	q4 : x=1 & y=2	q6 : x=1 & y=1
q6: x=1 & y=1	q4 : x=1 & y=2	q5 : x=2 & y=3	q2 : x=2 & y=2
q7 : x=2 & y=1	q2: x=2 & y=2	q3 : x=1 & y=3	q4 : x=1 & y=2

Tout état peut être vu comme final : tout préfixe d'une trace d'exécution est une trace d'exécution.

⇒ P peut être produit automatiquement (simulation)

Automate P



Etape 2

On suppose maintenant que l'environnement *E* suit le comportement suivant :

$$(a+b)(c(ac+b))^*$$

 \Rightarrow On veut construire l'automate S décrivant le programme interagissant avec cet environnement.

• Revient à calculer : $S = P \cap E$

Automate de E:

	а	b	С
p1	p2	p2	-
p2	-	-	рЗ
рЗ	p4	p2	-
p4	-	-	p2

Produit d'automates

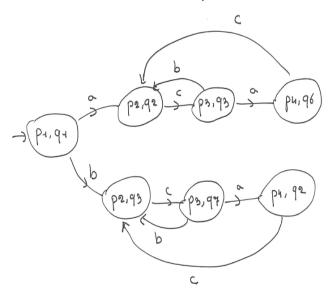
 \Rightarrow Intersection des 2 automates E et P:

$$((p1,q1),x,(p2,q2)) \in \delta_{\mathcal{S}}$$

si et seulement si :

- **1** (*p*1, *x*, *p*2) ∈ δ_E
- ② $(q1, x, q2) \in \delta_P$

Automate produit S



Etape 3

On veut maintenant vérifier des propriétés sur l'automate S :

- P_1 : On n'atteint jamais un état tel que les valeurs de x et y vérifient le prédicat $y = x + 1 \land x \neq 0$
 - Calcul des états atteignables dans S
 - Si aucun ne vérifie le prédicat ci-dessus la propriété est vraie
- P₂: pour tout chemin si on atteint q2 on atteindra q3 avant de revenir en q2
 - Intersection avec l'automate ¬P₂
 - Si l'automate obtenu reconnait le langage vide la propriété P₂ est vérifiée

Propriété 1

On n'atteint jamais un état tels que les valeurs de x et y vérifient le prédicat $y = x + 1 \land x \neq 0$?

	valeurs	$y = x + 1 \wedge x \neq 0$
q1	x=0 & y=1	X
q2	x=2 & y=2	X
q3	x=1 & y=3	X
q4	x=1 & y=2	✓
q5	x=2 & y=3	✓
q6	x=1 & y=1	X
q7	x=2 & y=1	X

✓ : vérifie le prédicat. X : ne vérifie pas le prédicat.

 \Rightarrow Effectivement aucun état atteignable de S n'est de la forme $(p_i, q4)$ et $(p_i, q5) \forall i$.

Propriété 2

 \Rightarrow si on atteint q2 on atteindra q3 avant de revenir en q2 (pour tout chemin)

Méthode:

• On construit l'automate O (non déterministe) qui reconnait la propriété $\neg P_2$: il existe un chemin qui passe 2 fois par q2 sans atteindre q3 (état final = propriété vérifiée)

 On construit un produit (une intersection avec condition sur les états) entre O et S : si le résultat est vide aucun chemin de S vérifie $\neg P_2$ sinon on obtient des contre-exemples

Automate O

Automate non déterministe :

	а	b	С
r1	r1, r2	r1, r2	r1, r2
r2	r3, r4	r3, r4	r3, r4
r3	r3, r4	r3, r4	r3, r4

On associe aux états ri de O les états de S qui ont été atteints :

r1 : on a atteint n'importe quel état de P

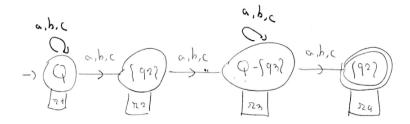
r2 : on a atteint q2

r3 : on a atteint n'importe quel état de P sauf q3

r4: on a atteint q2

r4 : état final

Automate O : encode la propriété non P2



Produit d'automates

- \Rightarrow On fait le produit entre l'automate S et l'automate O de la manière suivante:
 - intersection classique
 - un état (ri, pj, qk) est valide si et seulement si qk fait partie des états possibles pour ri.
 - (r1, p2, q2) valide (r1 n'importe quel état atteint)
 - (r3, p3, q3) non valide (r3 n'importe quel état atteint sauf q3)
 - un état non valide n'est pas productif (état puits)
 - les chemins qui mène à r4 viole la propriété P2

Résultat

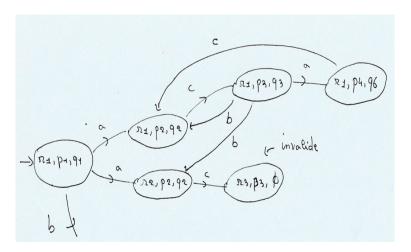
On ne traite que le sous-automate de S partant avec *a* (même traitement et résultat pour la branche avec *b*)

	а	b	С
(r1, p1, q1)	(r1, p2, q2),	non traité	-
	(r2, p2, q2)		
(r1, p2, q2)	-	-	(r1, p3, q3)
(r2, p2, q2)	-	-	(r3, p3, q3) non valide
(r1, p3, q3)	(r1, p4, q6)	(r1, p2, q2)	-
		(r2, p2, q2)	
(r1, p4, q6)	-	-	(r1, p2, q2)

Les états ri désignent les états de P qui ont été atteints :

On n'atteint jamais un état final (contenant r4) : on reconnait donc le langage vide : aucun chemin ne vérifie $\neg P2$ (donc tous vérifient P2).

Automate produit S et O



On n'atteint jamais un état avec r4.

Modèles par Automates et Vérification

Il existe des outils qui mettent en place de telles démarches :

- Production d'automates à partir d'une formalisation haut niveau (plus expressif que ce qu'on a vu, exemple communication)
- Langages pour énoncer des propriétés (logique temporelle) qui peut être traduit en vérification sur les automates (atteignabilité, existence de chemin . . .)
- Vérification ou production de contre-exemples
- démarche basée sur des automates et des opérations sur les automates

Exemple l'outil UPPAAL