Grammaires et Hiérarchie de Chomsky Grammaires : Séance 1

Marie-Laure Potet

Grenoble INP-Ensimag

2020-2021

Grenoble INP-Ensimag

2020-2021 < 1 / 1 >

Notes

Introduction

			_
			-
			_
			-
			-
Notes			
			_
			_
			_
			_

Grenoble INP-Ensimag

2020-2021 < 2 / 1 >

Description de langages

Rappels:

- *V* un vocabulaire (ensemble fini de symboles), $L \subset V^*$ un langage.
- Langages réguliers : langages reconnus par automate ayant un nombre fini d'états, langages descriptibles par expressions régulières (union, concaténation, itération)
- Certains langages ne sont pas réguliers : a^nb^n . Preuve en montrant qu'il n'existe pas d'automate (lemme de l'étoile)
- Problème d'expressivité : peut-on décrire systématiquement plus de langages?
 - √ Les grammaires
- Le langage de programmation idéal ca serait quoi?

Grenoble INP-Ensimag

2020-2021 < 3 / 1 >

Intérêt d'un formalisme de description

- Permet de caractériser une classe de langages. Exemples : les langages reconnus par automates d'état fini.
- Permet de donner des algorithmes agissant sur les formalismes. Exemple : algorithme de déterminisation.
- Permet d'étudier la décidabilité de propriétés sur les formalismes.
 - P(x) Décidable : il existe un algorithme permettant de répondre oui/non à la question "P(x) est vrai" pour tout x.
 - Indécidable : il n'existe pas d'algorithme

√ La hiérarchie de Chomsky. Expressivité versus Décidabilité et Complexité.

Exemples de problèmes décidables/indécidables sur les langages réguliers? sur les programmes?

2020-2021 < 4 / 1 > Grenoble INP-Ensimag

Notes				
Notes				

Grammaires

Grenoble INP-Ensimag

2020-2021 < 5 / 1 >

Grammaires : qu'est ce que c'est?

- ✓ Similaire à la grammaire d'une langue. Exemple grammaire de l'anglais en français.
 - Un vocabulaire terminal : ce qui constituera les mots (les phrases) du langage. Exemple : le vocabulaire de l'anglais.
 - Un vocabulaire non terminal : ce qui permet de parler de la construction des mots (phrases). Les catégories grammaticales.
 - Des règles permettant de produire les mots (phrases) du langage. Groupe_Nominal → Article Adjectif Nom.

2020-2021 < 6 / 1 > Grenoble INP-Ensimag

Notes			
Notes			

Grammaires: définition formelle

Définition: (Grammaire)

Une grammaire est un quadruplet $G = \langle V_T, V_N, S, R \rangle$, où :

- V_T est un vocabulaire, appelé vocabulaire terminal;
- V_N est un vocabulaire, appelé vocabulaire non terminal, et tel que $V_N \cap V_T = \emptyset$. On pose $V = V_T \cup V_N$.
- $S \in V_N$ est appelé l'axiome de la grammaire.
- R est un ensemble de règles de la forme $u \rightarrow v$ avec :
 - $u \in V^+$
 - $v \in V^*$

Grenoble INP-Ensimag

2020-2021 < 7 / 1 >

Exemples

Donner une grammaire pour les langages suivants :

- G_1 pour $(ab)^*(ba)^+$
- G_2 pour a^nb^n avec $n \ge 0$
- G_3 pour $a^nb^nc^n$ avec $n \ge 1$

Donner V_T , V_N , l'axiome et les règles.

- √ Conventions:
 - on fixe V_T . V_N est l'ensemble des symboles apparaissant dans les règles et n'appartenant pas à V_T , l'axiome est le symbole en partie gauche de la première règle.
 - Si plusieurs règles $A \rightarrow w_1, \ldots, A \rightarrow w_n$ on peut noter $A \rightarrow w_1 \mid \ldots \mid w_n$.

2020-2021 < 8 / 1 > Grenoble INP-Ensimag

Notes			
Notes			

Exemple 1

Donner une grammaire pour les langages suivants :

•
$$G_1$$
 pour $(ab)^*(ba)^+$

Donner V_T , V_N , l'axiome et les règles.

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & abA \\ A & \rightarrow & \epsilon \\ B & \rightarrow & baB \\ B & \rightarrow & ba \end{array}$$

$$V_T = \{a,b\}, \ V_N = \{S,A,B\}, \ S$$
 est l'axiome. ou bien :

$$B \rightarrow baB \mid ba$$

Grenoble INP-Ensimag

2020-2021 < 9 / 1 >

Exemple 2

Donner une grammaire pour les langages suivants :

•
$$G_2$$
 pour a^nb^n avec $n \ge 0$

Donner V_T , V_N , l'axiome et les règles.

$$\begin{array}{ccc} S & \rightarrow & aSb \\ S & \rightarrow & \epsilon \end{array}$$

 $V_T = \{a, b\}, V_N = \{S\}, S \text{ est l'axiome.}$

ou bien :

$$S \ o \ aSb \mid \epsilon$$

Grenoble INP-Ensimag Grammares 2020-2021 < 10 / 1 >

Notes			

Exemple 3

Donner une grammaire pour les langages suivants :

• G_3 pour $a^nb^nc^n$ avec $n \ge 1$

Donner V_T , V_N , l'axiome et les règles.

- $(2) \quad S \quad \rightarrow \quad aSBc$
- (3) $cB \rightarrow Bc$
- (4) $bB \rightarrow bb$

 $V_T = \{a, b, c\}, V_N = \{S, B\}, S \text{ est l'axiome.}$

Grenoble INP-Ensimag

Grenoble INP-Ensimag

2020-2021 < 11 / 1 >

2020-2021 < 12 / 1 >

Notes

Langage associé à une grammaire

Notes	

Relation de dérivation

Définition: (Relation de dérivation)

- Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire.
- Soit $x, y \in V^*$. On dit que x dérive vers y, noté $x \Longrightarrow y$ si et seulement si il existe une règle $u \to v$ et deux chaînes $\alpha, \beta \in V^*$ *telles que* $x = \alpha u \beta$ *et* $y = \alpha v \beta$.

Si on veut être précis on note \Longrightarrow_r , avec r une règle ou $\Longrightarrow_{p,r}$ avec pune position dans x et r une règle.

- \checkmark Ne pas mélanger \rightarrow (pour les règles) et \Longrightarrow (pour les dérivations).
- \checkmark Ne pas mélanger \Rightarrow (implication logique) et \Longrightarrow (pour les dérivations).

Grenoble INP-Ensimag

2020-2021 < 13 / 1 >

Dérivation de longueur quelconque

On note \Longrightarrow^p une dérivation de longueur p. Définie par :

$$\begin{array}{cccc} u \Longrightarrow^{0} v & \Leftrightarrow & u = v \\ u \Longrightarrow^{1} v & \Leftrightarrow & u \Longrightarrow v \\ u \Longrightarrow^{p+1} w & \Leftrightarrow & \exists \ v \ . \ u \Longrightarrow v \land v \Longrightarrow^{p} w \end{array}$$

✓ Propriété de composition des dérivations :

$$u_1 \Longrightarrow^{p_1} v_1 \qquad u_2 \Longrightarrow^{p_2} v_2$$

$$u_1u_2 \Longrightarrow^{p_1+p_2} v_1v_2$$

On note \Longrightarrow^* la fermeture réflexive et transitive de \Longrightarrow .

$$\Longrightarrow^* = \bigcup_{i \in N} \Longrightarrow^i$$

Grenoble INP-Ensimag

2020-2021 < 14 / 1 >

lotes			
lotes			
Jotes			
lotes			

Exemple 1

$$V_T = \{a, b\}$$
 $V_N = \{S\}$
 $R = \left\{ egin{array}{ll} S &
ightarrow & arepsilon \\ S &
ightarrow & a \, S \, b \end{array}
ight. \quad ext{not\'e \'egalement } S
ightarrow arepsilon \mid a \, S \, b \,$

- $S \Longrightarrow^1 \varepsilon$
- $S \Longrightarrow^1 aSb \Longrightarrow^1 ab \ (S \Longrightarrow^2 ab)$
- $\bullet \ S \Longrightarrow aSb \Longrightarrow aaSbb \Longrightarrow aaaSbbb \Longrightarrow aaabbb \ \ (S \Longrightarrow^* aaaabbbb)$

Grenoble INP-Ensimag

2020-2021 < 15 / 1 >

Exemple 2

(1)
$$S \rightarrow abc$$

(2)
$$S \rightarrow aSBc$$

$$(3)$$
 $cB \rightarrow Bc$

$$(4)$$
 $bB \rightarrow bb$

$$S \implies_2 aSBc$$

 $\implies_1 aabcBc$
 $\implies_3 aabBcc$
 $\implies_4 aabbcc$

Grenoble INP-Ensimag 2020-2021 < 16 / 1 >

Notes			
Notes			

Langage engendré

Définition: (Langage engendré par une grammaire)

• Soit une grammaire $G = \langle V_T, V_N, S, R \rangle$. Le langage engendré $par G est L(G) = L(S) = \{x \in V_T^* \mid S \Longrightarrow^* x\}$

Généralisation. Soit $w \in V^*$. On pose :

$$L(w) = \{x \in V_T^* \mid w \Longrightarrow^* x\}$$

Grenoble INP-Ensimag

2020-2021 < 17 / 1 >

Langage engendré - Exemples

Exemple. Soit $V_T = \{a, b\}$ et les règles suivantes :

$$S \rightarrow AB \quad A \rightarrow a \quad A \rightarrow aA$$

 $B \rightarrow \epsilon \quad B \rightarrow bB$

L(A) ? L(B) ? L(S) ? L(AbA) ?

 \checkmark Propriété : Deux grammaires G_1 et G_2 sont dites équivalentes ssi elles engendrent le même langage :

$$L(G_1) = L(G_2)$$

2020-2021 < 18 / 1 > Grenoble INP-Ensimag

Notes			
Notes			

Grammaire : un processus énumératif

- ⇒ On peut voir les grammaires comme un processus permettant d'énumerer les mots du langage :
- 1. On part de l'axiome
- 2. On applique toutes les règles possibles sur toutes les occurrences possibles
- 3. on réitère le pas 2 sur les mots de dérivation obtenus
- \Rightarrow une procédure de semi-décision pour le problème $w \in L(G)$.

Exemple grammaire précédente :

```
pas 0 : S
pas 1
    : AB
```

pas 2 : aB, aAB, A, AbB

pas 3 : a, abB, aaB, aaAb, aA, aAbB, a, aA, abB, aaAB

pas 4 : ...

 $aa \in L(G)$? ba $\in L(G)$? Comment décider de l'arrêt?

Grenoble INP-Ensimag

Grenoble INP-Ensimag

2020-2021 < 19 / 1 >

2020-2021 < 20 / 1 >

Notes

Hiérarchie de Chomsky

	_
	_
	_
Notes	

Hiérarchie de Chomsky

Noam Chomsky (1928) : linguiste et philosophe. 1950 : théorie des grammaires génératives.

- Une classification des grammaires (et des langages) qui permettra l'étude du compromis expressivité/décision.
- Une restriction sur la forme des règles
- 4 classes de grammaires :
 - Grammaires régulières (classe 3)
 - Grammaires hors-contexte (classe 2)
 - Grammaires sous-contexte (classe 1)
 - Grammaires générales (classe 0)

Grenoble INP-Ensimag

2020-2021 < 21 / 1 >

Grammaire régulière

Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire. G est dite régulière si et seulement si les règles sont d'une des formes suivantes :

- $A \rightarrow \epsilon$
- $A \rightarrow aB$

avec $A \in V_N$, $B \in V_N$ et $a \in V_T$.

√ Exemples

Une telle grammaire est dite linéaire à droite. Il existe d'autres façons équivalentes (i.e. engendrant les mêmes langages) de décrire les grammaires régulières (voir TD).

C'est bien la même classe que celle qu'on a déjà vue! (séance 2 ou 3)

2020-2021 < 22 / 1 > Grenoble INP-Ensimag

Notes			
Notes			

Grammaire hors-contexte

Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire. G est dite hors-contexte si et seulement si les règles sont de la forme :

•
$$A \rightarrow w$$

avec $A \in V_N$ et $w \in (V_T \cup V_N)^*$.

√ Exemples

⇒ Une classe qu'on aime bien! Bon compromis Expressivité/décidabilité

Grenoble INP-Ensimag

2020-2021 < 23 / 1 >

Grammaire sous-contexte

Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire. G est dite sous-contexte si et seulement si les règles sont de la forme :

•
$$u \rightarrow v$$
 avec $|u| \le |v|$

avec $u \in V^+$, $v \in V^+$. Rappel : par définition des grammaires $u \neq \epsilon$.

√ Exemples

- ⇒ La condition sur la taille donnera un algorithme de décision pour $w \in L(G)$.
- \Rightarrow On énumère tous les mots $\alpha \in (V_T \cup V_N)^*$ tel que $S \Longrightarrow^* \alpha$ et $|\alpha| \le |w|$. Si on n'a pas trouvé w on ne le trouvera pas.

2020-2021 < 24 / 1 > Grenoble INP-Ensimag

Notos				
Notes				

Grammaire sous-contexte (suite)

- Une définition équivalente (si, si!). Règles de la forme :
 - $uAv \rightarrow uwv$

avec $A \in V_N$ et u, v, w dans V^* et $w \neq \epsilon$.

Pour les 2 définitions :

Si ϵ dans le langage on peut ajouter les règles :

- $Z \rightarrow \epsilon$
- et $Z \rightarrow S$,

avec Z un nouveau symbole qui devient l'axiome.

Grenoble INP-Ensimag

2020-2021 < 25 / 1 >

Grammaire générale

Pas de restriction.

√ Résultats :

- G régulière $\Rightarrow G$ hors-contexte
- *G* hors-contexte sans ϵ -règle \Rightarrow *G* sous-contexte
- G sous-contexte $\Rightarrow G$ générale

On appelle ϵ -règle une règle de la forme $A \to \epsilon$.

✓ Questions :

- Soit *G* une grammaire. Peut-on décider de sa classe?
- Grammaire des grammaires?

2020-2021 < 26 / 1 > Grenoble INP-Ensimag

Notes			
Notes			

Classes de langages

⇒ Extension de la notion de classes de grammaires aux langages.

Un langage L est dit régulier (hors-contexte, sous-contexte, général) si et seulement si il existe une grammaire G régulière (hors-contexte, sous-contexte, générale) telle que L(G) = L.

√ Remarques:

- On s'intéresse généralement à la plus petite sous-classe d'un langage
- Prouver L(G) = L est "complexe". On verra une manière systématique de faire cette preuve (pour les langages hors-contexte).
- Il n'y a pas d'algorithme pour décider de la classe d'un langage.

Grenoble INP-Ensimag

2020-2021 < 27 / 1 >

Hiérarchie de langages

√ Résultats :

- Extension des implications sur les grammaires aux langages
- Plus généralement L hors-contexte $\Rightarrow L$ sous-contexte (preuve en séance 2 ou 3)
- Inclusion stricte des classes de langages
- Les grammaires ne captent pas tous les langages
- √ Voir schéma au tableau
- L Hors-contexte non régulier :
- L Sous-contexte non Hors-contexte:
- L géneral non Sous-contexte :
- L non général :

Grenoble INP-Ensimag 2020-2021 < 28 / 1 >

Notes			
Notes			

Ce qu'on étudiera

- Les propriétés (en termes de décidabilité) de ces différentes sous-classes
 - $w \in L(G)$?
 - $L(G_1) = L(G_2)$?
 - ...
- Plus particulièrement la classe des langages hors-contexte et ses propriétés

Grenoble INP-Ensimag Grammaires 2020-2021 < 29 / 1 >

Notes			
Notes			
10100			