Théorie des Langages 1

Cours 5 : Preuves, implémentation et applications

L. Rieg

Grenoble INP - Ensimag, 1re année

Année 2024-2025

L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2024-2025

1 / 25

Notes

Rappels sur l'élimination des ε -transistions

- 1. Calculer $\mathrm{Acc}_{\varepsilon}(p)$, les états accessibles par ε -transistions \sim par itération (cf. cours 1)
- 2. Construire un automate B équivalent sans $\varepsilon\text{-transition}$

$$\begin{array}{cccc}
 & a & & \\
 & & & \\
\hline
 & B & & \\
\hline
 & B & & \\
\hline
 & A & & \\$$

Remarques

- ullet Même Q, V et I, seuls δ et F changent
- Par construction, B est sans ε -transition

Votes			
Votes			
Notes			
Jotes			
Notes			
Jotes			
Votes			
Votes			
lotes			
lotes			
Votes			
Jotes			
Jotes			
Votes			
Notes			
lotes			
lotes			
Jotes			
Jotes			
Notes			
Notes			
Notes			
Jotes			
Notes			
Notes			
Notes			

Correction de l'élimination des ε -transistions

Théorème

 \forall automate A, l'automate B défini précédemment est équivalent à A.

Lemme intermédiaire : caractérisation des chemins

L'automate B vérifie la propriété suivante :

Il existe un chemin de p à q de trace w dans Asi et seulement si

il existe $r \in Q$ tel qu'il existe un chemin de p à r de trace w dans Bet un chemin de r à q de trace ε dans A.

Preuve par induction sur w.

• Base : $w = \varepsilon$. Il suffit de prendre $r \stackrel{\text{def}}{=} p$.

L. Rieg (Ensimag 1A) Théorie des Langages 1

Année 2024-2025

Preuve par induction, suite

• Induction : $w = aw' \quad (a \in V)$

Notes			
Notes			
Notes			

Preuve du théorème

L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2024-2025

5 / 25

Notes

Rappels sur la déterminisation

Idée : suivre tous les chemins en parallèle

- Entrée : un automate $A = \langle Q, V, \delta_A, I, F_A \rangle$ sans ε -transistions
- \bullet Sortie : un automate B déterministe complet équivalent à A

Définition (Automate des parties)

Etant donné un automate $A=\langle Q,V,\delta_A,I,F_A\rangle$ sans ε -transition, on construit l'automate $B=\langle \mathcal{P}(Q),V,\delta_B,\{I\}\,,F_B\rangle$, où :

ullet δ_B est défini par

$$\forall P \subseteq Q, \forall a \in V, \ \delta_B(P, a) = \{q \in Q \mid \exists p \in P : (p, a, q) \in \delta_A\}$$

• $F_B = \{ P \subseteq Q \mid P \cap F_A \neq \emptyset \}$

10103			
lotes			
lotes			
Votes			
lotes			
Notes			
Votes			
lotes			
Notes			
Notes			
Jotes			
Notes			
Notes			
Notes			

Propriété (caractérisation des chemins)

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

 $\textbf{Preuve}: \mathsf{par} \; \mathsf{induction} \; \mathsf{sur} \; w$

• $w = \varepsilon$:

L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2024-202

7/2

Propriété (caractérisation des chemins)

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

•
$$w = aw'$$
:

otes	
	_
lotes	
	_
	_

Correction de la déterminisation Théorème L'automate B est équivalent à A. Preuve: L. Rieg (Ensimag 1A) Théorie des Langages 1 Année 2024-2025 9/25

Implémentation des automates

Notes		
Notes		

Notes

Pour les AFD complets

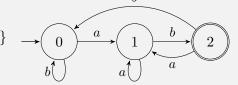
AFD = cas facile

- jamais de choix à faire (déterminisme)
- toujours défini (complétude)
- → existence + unicité du chemin
- → important pour définir l'état d'un système (cf cours d'architecture)

3 méthodes :

- •
- •
- •

Exemple filé : $L = V^*.\{ab\} \quad \ \, _$



L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2024-202

11 / 25

Interface

Comment est représenté le mot?

- par une
- par une

initialisation de la source init input (...)

acces au caractere suivant
next_char()

(tout est connu d'un coup)

(arrivée au compte-goutte)

Exemples

import sys
in_stream = sys.stderr

def init_input():
 global in_stream = sys.stdin

def next_char():
 global in_stream
 return in_stream.read(1)

word = ""
index = 0

def init_input(w):
 global word = w
 global index = -1

def next_char():
 global index+=1
 return global word[index]

Notes			
Notes			

Notes		

Automates et fin de mot

```
def exec():
    state = i
    init input()
   ch = next char()
    while ???:
        state = step(state, ch)
        ch = next char()
    return state \in accepting
```

avec:

- i l'état initial
- step la fonction de transition
- accepting les états acceptants

Comment reconnaître la fin du mot?

- Connaître la taille du mot (exemple : chaînes Python, OCaml) → possible uniquement si toute l'entrée est disponible à la fois
- ullet Ajouter un caractère spécial $\notin V$ de fin de mot ('\0', EOL/EOF) → marche dans tous les cas (transmission sur réseau)

Ici, on choisit d'ajouter un caractère spécial \$ (ou END)

 $def A = \{0: \{'a': 1, 'b': 0\},\$

Implémentation par table ou par tests

Par table Par tests

Idée :

Idée :

def step(state, ch):

Coût = tests + sauts

```
1: {'a': 1, 'b': 2},
                                if state == 0:
       2: {'a': 1, 'b': 0}}
                                   if ch == 'a':
                                      return 1
def step(state, ch):
                                   elif ch == 'b':
   return A. transitions[state][ch]
                                      return 0
                                elif state == 1:
Coût = lecture mémoire
```

Rieg (Ensimag 1A)	Théorie des Langages 1

Notes			
Notes			

Implémentation par fonctions

Idée:

```
\sim pas de boucle while ni de fonction _{\mathrm{step}}
```

```
def state1():
def state0():
                                             def state2():
   ch = next char()
                          ch = next char()
                                                 ch = next char()
   if ch == 'a':
                          if ch == 'a':
                                                 if ch == 'a':
        return state1()
                              return state1()
                                                     return state1()
    elif ch == 'b':
                          elif ch == 'b':
                                                 elif ch == 'b':
        return state0()
                              return state2()
                                                     return state0()
    elif ch == '$':
                          elif ch == '$':
                                                 elif ch == '$':
       return False
                              return False
                                                     return True
```

- plus modulaire que la boucle while
- permet de faire du calcul
- Coût = appel de fonction

```
automate = ensemble de fonctions

lecture = appeler l'état initial def exec_v2():

état courant = la fonction qui s'exécute def exec_v2():

init_input()

return state0()
```

L. Rieg (Ensimag 1A)

L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2024-2025

15 / 25

Quelle méthode pour les AFND?

- Par fonction une fonction est spécifique à un état...
 Exponentiel avec plusieurs états! (nb de chemins)
- Par matrice ou tests
 variable state = ensemble d'états
- + itération sur state pour calculer l'état suivant
- \sim deux variables : state, new state
- → boucles sur state paralléliser les tests / lectures mémoire

Théorie des Langages 1

= step (A, state, ch)
next_char()
ccepting.inter(state)

Année 2024-2025 16/25

Notes			
Notes			
Notes			

Comparaison AFD/AFND AFD

- exécution très rapide O(|w|) (jamais de choix à faire)
- plus gros que AFND (exponentiellement!)

Cas d'utilisation

- Vitesse exigée
- Beaucoup d'utilisation
- Construction de l'automate à l'avance

 \sim ex : compilateur

AFND

- exécution plus lente $O(|w| \cdot |Q|)$ (ensembles d'états)
- plus compacts que AFD

Cas d'utilisation

- Contraintes d'espace
- Utilisation unique (ou faible)
- Construction de l'automate à l'utilisation
- Facile dans les circuits

→ ex : expressions régulières

Choix AFD/AFND = compromis espace/temps

L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2024-2025

17 / 25

Exemple d'utilisation : analyse lexicale

Première partie d'un compilateur : reconnaître les programmes corrects

Étapes :

- 1. Décrire les programmes corrects
- expression régulière / grammaire

- 2. Construire un AFND
- 3. Le déterminiser
- 4. En faire une implémentation par sauts (fonction)

En plus

• faire du calcul vs. OUI/NON

voir TP/projet

• gestion des erreurs (cas else des if)

En TP : reconnaissance des constantes flottantes en Python

Notes Notes

Application des automates

L. Rieg (Ensimag 1A)

= caractère par caractère

Application 1 : algo KMP

 $\textbf{Contexte}: \textbf{recherche d'un motif} \ m \ \textbf{dans un texte} \ t$

Contraintes:

- ullet construction de l'automate linéaire (en |m|)
- parcours du texte en ligne pas de retour en arrière possible Complexité linéaire en |t|

Idée : décaler le motif de « juste ce qu'il faut » en cas d'erreur sans rater d'occurence de m

w		t
w	m	
w	m	

Que peut-on dire de w?

L. Rieg (Ensimag 1A) Théorie des Langages 1

Notes			
			-
u .			
Notes			

Calcul des bords d'un mot

Définition (Bord)

Le bord d'un mot $w \neq \varepsilon$ est son plus grand préfixe strict qui en est également un suffixe. On le note $\varphi(w)$.

Pourquoi strict?

Calcul de $\varphi(w)$

- pour $a \in V$, $\varphi(a) = ?$
- pour $w \in V^+, a \in V$, $\varphi(wa) = ?$

Idée : si problème après w, réessayer avec $\varphi(w)$!

L. Rieg (Ensimag 1A)

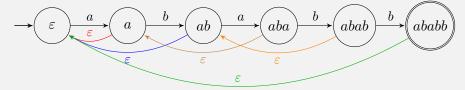
Théorie des Langages :

Année 2024-2025

21 / 2!

Exemple : recherche de ababb

Recherche de m = ababb dans t = abaababb.



Calcul de $\varphi(w)$ pour w préfixe de m :

Complexité de la construction :

Taille de l'AFD complet :

Complexité de la lecture :

Notes			

Notes			

Application 2 : statégie dans un jeu

Jeu du fermier (cf. exercice 14 du recueil de TD)

Exercice

- 1. Représenter le problème par un automate, en précisant le vocabulaire choisi.
- 2. Comment déterminer une stratégie à partir de l'automate? Quelles sont les stratégies optimales?

L. Rieg (Ensimag 1A) Théorie des Langages 1

Notes

Solution

-		
Notes		