
Geometric
Representations

3D Graphics

Motivation

Geometric representation

• What do we want to do?
empty space
(typically ℝ3)

geometric object

B ℝ3

B

ℝ𝑑

Fundamental problem

• The Problem:

We need to encode a continuous model with a finite
amount of information

B

ℝd

infinite number of points my computer: 8GB of memory

Where does this problem occur?

• Reconstruction from real data
• Modeling or analyses based on acquired

scenes

• Procedural modeling
• Automatic modeling of structured

scenes or objects

• Interactive modeling
• Develop tools for computer artists

Overview

Volume Representation Surface Representation

Implicit • Voxel grid • Level sets

Parametric • Tetrahedral meshes • Spline surfaces
• Subdivision surfaces
• Primitive meshes

• Triangle meshes

Volume representations

Volume

Definition: compact
subset of ℝ3

Interest of volumetric
representation
• Allows to model interior

information of shapes,
e.g. shape densities,
colors etc.

• For modeling and
simulation, can constrain
unrealistic shape
variation

• Many of the models used
in graphics (animals,
plants) are volumetric in
reality

Implicit voxel grid

• Defined by function
𝐹:ℝ3 → ℝ

• Discretized voxel grid
assigns a value 𝑣 to
position (𝑥, 𝑦, 𝑧)

Implicit voxel grid

Advantages

• Straight forward to
extract or change value
𝑣 associated to position
(𝑥, 𝑦, 𝑧)

Disadvantages

• Difficult to modify
shape as no high-level
information is available

• For irregular shapes,
requires voxelization of
large volume

Parametric tetrahedral mesh

Defined by a function
𝑓: Ω → ℒ
with Ω ⊂ ℝ3

ℒ ⊂ ℝ3 = volume of interest

Parametric tetrahedral mesh

Advantages

• Allows to modify the
shape by changing the
mapping function

• Used for deformations
and simulations

Disadvantages

• Difficult to store
associated information
𝑣 associated to position
(𝑥, 𝑦, 𝑧) at non-vertex
positions

• Interpolating values
requires computation

Surface representations

Surface

Definition: orientable 2D
manifold embedded in ℝ3

Intuitively:

• Boundary surface of non-
degenerate 3D solid

• Non-degenerate: no
infinitely thin parts, i.e.
solid has a clearly defined
interior and exterior

Implicit Level Sets

• Defined by function
𝐹:ℝ3 → ℝ

• Discretized voxel grid
assigns a distance 𝑑
from the surface to
each position (𝑥, 𝑦, 𝑧)

Implicit Level Sets

Advantages

• Straight forward to
extract or change value
𝑣 associated to position
(𝑥, 𝑦, 𝑧)

• Allows for fast Boolean
operations of surfaces

Disadvantages

• Difficult to modify
surface as no high-level
information is available

• For irregular shapes,
requires voxelization of
large volume

Parametric Surface
Representations
Defined by a function

𝑓: Ω → ℒ
with Ω ⊂ ℝ2

ℒ ⊂ ℝ3 = full embedding space

Spline surfaces

• Parameter domain Ω = 𝑢𝑛, 𝑢𝑚 × 𝑣𝑛, 𝑣𝑘
• Polynomial or rational basis functions 𝑁𝑖

𝑛(.)

• 𝑢, 𝑣 → σ𝑖=0
𝑚 σ𝑗=0

𝑘 𝑐 𝑖𝑗 𝑁𝑖
𝑛 𝑢 𝑁𝑗

𝑛 𝑣

• 𝑐 𝑖𝑗 are called control points and define a control
mesh

Historic example

« Utah teapot »

Spline Surfaces

Advantages

• Allows to model
smooth surfaces

• Easy to evaluate points
at any position

• Allows for deformation
by changing control
points

Disadvantages

• Difficult to fit to
acquired scan data
efficiently

21

Loop

Butterfly

Catmull-Clark

Subdivision surfaces

• Topology defined by the control polygon

• Progressive refinement (interpolation or approximation)

Subdivision surfaces

• Like splines, they are hence controlled by coarse
control mesh

• Each step involves
• Subdivision (insertion of new vertices)

• Adjustment of vertex positions (new only for
interpolation schemes, all for approximation schemes)

• Provably converge to smooth limit surfaces

Subdivision Surfaces

Advantages

• Arbitrary geometry and
topology can be
modeled

• Approximation at
different level of detail

Disadvantages

• No parameterization

• Some unexpected
results

Loop

Primitive meshes

• Primitive Meshes
• Collection of geometric primitives

• Triangles

• Quadrilaterals

• Typically, primitives are
parametric surfaces

• Composite model:
• Mesh encodes topology, rough shape

• Primitive parameter encodes local geometry

• Triangle meshes rule the world (including “triangle
soups”)

Primitive meshes

• Complex Topology for Parametric Models
• Mesh of parameter domains attached in a mesh

• Domain can have complex shape (“trimmed patches”)

• Separate mapping function f for each part
(typically of the same class)

1

2

3

Primitive meshes

Advantages
• Compact representation

(usually)
• Can represent arbitrary

topology

Disadvantages
• Need to specify a mesh

first, then edit geometry
• Problems

• Mesh structure needs to
be adjusted to fit shape

• Mesh encodes object
topology
 Changing object
topology is difficult

• Examples
• Surface reconstruction
• Fluid simulation (surface

of splashing water)

Special case:
Triangle mesh

Triangle meshes

• (Probably) most common representation

• Simplest surface primitive
that can be assembled into meshes
• Rendering in hardware (z-buffering)

• Simple algorithms for intersections (raytracing,
collisions)

• Piecewise linear surface representation

• Each triangle (𝒂, 𝒃, 𝒄) defines points
𝒑 = α𝒂 + β𝒃 + γ𝒄

with α + β + γ = 1, α + β + γ > 0

Attributes

•How to define a triangle?
• We need three points in ℝ3 (obviously).

• But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)

Shared Attributes in Meshes

In Triangle Meshes:
• Attributes might be shared or separated:

adjacent triangles
share normals

adjacent triangles
have separated normals

“Triangle Soup”

•Variants in triangle mesh representations:
• “Triangle Soup”

• A set S = {t1, ..., tn} of triangles

• No further conditions

• Does not represent a surface

• Triangle Meshes: Additional consistency conditions
• Conforming meshes: Vertices meet only at vertices

• Manifold meshes: No intersections, no T-junctions

Conforming Meshes

•Conforming Triangulation:
• Vertices of triangles must only meet at vertices, not in

the middle of edges:

• This makes sure that we can move vertices around
arbitrarily without creating holes in the surface

Manifold Meshes

Triangulated two-manifold:
• Every edge is incident to exactly 2 triangles

(closed manifold)

• ...or to at most two triangles (manifold with boundary)

• No triangles intersect (other than along common edges
or vertices)

• Two triangles that share a vertex must share an edge

Attributes

•In general:
• Vertex attributes:

• Position (mandatory)

• Normals

• Color

• Texture Coordinates

• Face attributes:
• Color

• Texture

• Edge attributes (rarely used)
• E.g.: Visible line

In-class exercise

In-class exercise

• How would you describe a triangle mesh whose
attributes are only vertex positions?

• What data structure would you use?

• What are the advantages and disadvantages?

Some common data structures

• List of vertices, triangles, edges

• Half-edge data structure

Simple data structure

•The simple approach: List of vertices, edges,
triangles
v1: (posx posy posz), attrib1, ..., attribnav

...

vnv: (posx posy posz), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat

Pros & Cons

Advantages:

• Simple to understand and
build

• Provides exactly the
information necessary for
rendering

Disadvantages:

• Dynamic operations are
expensive:
• Removing or inserting a

vertex
 renumber expected
edges, triangles

• Adjacency information is
one-way
• Vertices adjacent to

triangles, edges direct
access

• Any other relationship
need to search

• Can be improved using hash
tables (but still not dynamic)

Adjacency data structures

Alternative:
• Some algorithms require extensive neighborhood

operations (get adjacent triangles, edges, vertices)

• ...as well as dynamic operations (inserting, deleting
triangles, edges, vertices)

• For such algorithms, an adjacency based data structure
is usually more efficient
• The data structure encodes the graph of mesh elements

• Using pointers to neighboring elements

First try...

•Straightforward Implementation:
• Use a list of vertices, edges,

triangles

• Add a pointer from each element
to each of its neighbors

• Global triangle list can be used for rendering

•Remaining Problems:
• Lots of redundant information – hard to keep consistent

• Adjacency lists might become very long
• Need to search again (might become expensive)

• This is mostly a “theoretical problem” (O(n) search)

Less Redundant Data Structures

Half edge data structure:
• Half edges, connected by clockwise / ccw pointers

• Pointers to opposite half edge

• Pointers to/from start vertex of each edge

• Pointers to/from left face of each edge

// a vertex

struct Vertex {

HalfEdge* someEdge;

/* vertex attributes */

};

// the face (triangle, poly)

struct Face {

HalfEdge* half;

/* face attributes */

};

Implementation

•// a half edge
•struct HalfEdge {

• HalfEdge* next;

• HalfEdge* previous;

• HalfEdge* opposite;

• Vertex* origin;

• Face* leftFace;

• EdgeData* edge;

•};

•// the data of the edge
•// stored only once
•struct EdgeData {

• HalfEdge* anEdge;

• /* attributes */

•};

Implementation

Implementation:
• The data structure should be encapsulated

• To make sure that updates are consistent

• Implement abstract data type with more high level operations
that guarantee consistency of back and forth pointers

• Free Implementations are available, for example
• OpenMesh

• CGAL

• Many alternative data structures exist: for example
winged edge (Baumgart 1975)

Hierarchical modeling

Hierarchical modeling

• Basic example: OpenGL programming
• Describe each object in the frame where it is the

simplest

• Assemble them in a hierarchy for consistency!

Example of hierarchical modeling

• Character = hierarchy of limbs

• The foot remains connected to the leg when the
hip articulates !

